

Interactively Illustrating the Context-Sensitivity of Aristotelian Diagrams

Lorenz Demey

CONTEXT 2015, Larnaca, 2 - 6 November 2015

KU LEUVE

Introduction

- 2 Aristotelian Diagrams and Context-Sensitivity
- 3 Measuring Context-Sensitivity of Aristotelian Diagrams
- Case Study: Categorical Statements with Subject Negation 4

Context-Sensitivity in Aristotelian Diagrams - L. Demey

Introduction

2 Aristotelian Diagrams and Context-Sensitivity

3 Measuring Context-Sensitivity of Aristotelian Diagrams

4 Case Study: Categorical Statements with Subject Negation

5 Conclusion

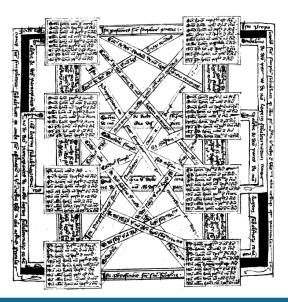
Context-Sensitivity in Aristotelian Diagrams - L. Demey

Introduction

- Aristotelian diagram
 - compact visual representation
 - of the elements of some logical/lexical/conceptual field
 - and the logical relations holding between them
- most widely known example: square of oppositions
- intellectual background
 - rich history in philosophical logic
 - starting in the 2nd century AD (Apuleius)
 - especially popular in medieval logic
 - today: used in various disciplines
 - cognitive science, linguistics, law...
 - computer science, neuroscience...
 - ⇒ Aristotelian diagrams as a *lingua franca* for an interdisciplinary research community concerned with logical reasoning

Context-Sensitivity in Aristotelian Diagrams – L. Demey

Context-Sensitivity in Aristotelian Diagrams – L. Demey



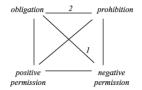
Context-Sensitivity in Aristotelian Diagrams – L. Demey

The European Journal of International Law Vol. 17 no.2 © EJIL 2006; all rights reserved

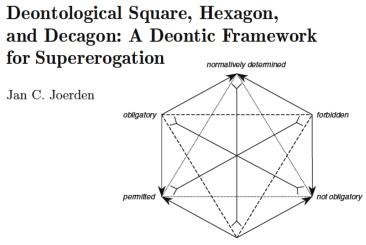
The Definition of 'Norm Conflict' in International Law and Legal Theory

Erich Vranes*

The possible set of inter-relations can be illustrated by using the so-called deontic square, which in fact relies on the logic square known since Greek antiquity,⁸⁵ and which was arguably first used in deontic logic by Bentham:⁸⁶



Context-Sensitivity in Aristotelian Diagrams – L. Demey



normatively indifferent

Context-Sensitivity in Aristotelian Diagrams – L. Demey

• research project: logical geometry

(with Hans Smessaert)

- study new decorations of Aristotelian diagrams
 - historical case studies (e.g. Avicenna, Sherwood, Ockham)
 - applications in various fields (e.g. philosophy of language, AI)
- study Aristotelian diagrams as objects of independent interest
 - visual-geometrical aspects: dimension, perpendicularity, collinearity, etc.
 - abstract-logical aspects: information, graded opposition, etc.

 \Rightarrow logical context-sensitivity of Aristotelian diagrams!

KU LEUVEN

Introduction

2 Aristotelian Diagrams and Context-Sensitivity

3 Measuring Context-Sensitivity of Aristotelian Diagrams

4 Case Study: Categorical Statements with Subject Negation

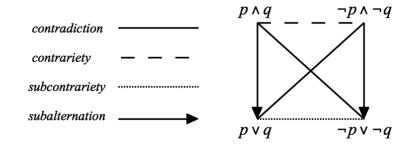
5 Conclusion

Context-Sensitivity in Aristotelian Diagrams - L. Demey

• traditional definition: two formulas are

contradictory	iff	they cannot be true together and they cannot be false together,			
contrary	iff	they cannot be true together but they can be false together,			
subcontrary	iff	they cannot be false together but they can be true together,			
in subalternation	iff	the first entails the second but not vice versa.			

Context-Sensitivity in Aristotelian Diagrams – L. Demey



Context-Sensitivity in Aristotelian Diagrams – L. Demey

• traditional definition: two formulas are

contradictory	iff	they cannot be true together and they cannot be false together,		
contrary	iff	they cannot be true together but they can be false together,		
subcontrary	iff	they cannot be false together but they can be true together,		
in subalternation	iff	the first entails the second but not vice versa.		

where is the logical context-sensitivity?

- in the modals ("can", "cannot")
- e.g. " φ and ψ can be true together" ~~ " $\varphi \wedge \psi$ has a **model**"

Context-Sensitivity in Aristotelian Diagrams – L. Demey

$ullet$ for a given logical system S, the formulas $arphi$ and ψ are							
S-contradictory	iff	$S\models \neg(\varphi \wedge \psi)$	and	$S\models \neg(\neg\varphi\wedge\neg\psi)$			
S-contrary	iff	$S\models \neg(\varphi \wedge \psi)$	and	$S \not\models \neg (\neg \varphi \land \neg \psi)$			
S-subcontrary	iff	$S \not\models \neg (\varphi \land \psi)$	and	$S\models \neg(\neg\varphi\wedge\neg\psi)$			
in S- subalternation	iff	$S\models\varphi\rightarrow\psi$	and	$S \not\models \psi \to \varphi$			

• example from epistemic logic: formulas Kp and $\neg KKp$

- contradictory in the system S4
- subcontrary in the system T
- only difference between these two systems: positive introspection axiom $(K\varphi \rightarrow KK\varphi)$
- philosophical importantance
 - logical system = list of axioms
 - but also: reflection of substantial position in philosophical debate (e.g. in epistemology: internalism vs. externalism)

Context-Sensitivity in Aristotelian Diagrams - L. Demey

KU LEUVEN

1 Introduction

2 Aristotelian Diagrams and Context-Sensitivity

3 Measuring Context-Sensitivity of Aristotelian Diagrams

4 Case Study: Categorical Statements with Subject Negation

5 Conclusion

Context-Sensitivity in Aristotelian Diagrams - L. Demey

- how can we measure/quantify this type of context-sensitivity?
- bitstring representation of formulas
 - for a given logic S and fragment \mathcal{F} of formulas, define the partition $\Pi_{S}(\mathcal{F}) := \{ \bigwedge_{\varphi \in \mathcal{F}} \pm \varphi \} \{ \bot \}$
 - mutually exclusive: $S \models \neg(\alpha_i \land \alpha_j)$ for distinct $\alpha_i, \alpha_j \in \Pi_S(\mathcal{F})$
 - jointly exhaustive: $S \models \bigvee \Pi_S(\mathcal{F})$
 - theorem: every $\varphi \in \mathcal{F}$ is S-equivalent to a disjunction of $\Pi_{S}(\mathcal{F})$ -formulas (relativized disjunctive normal form)
 - if $\Pi_{\mathsf{S}}(\mathcal{F}) = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5\}$, and $\varphi \equiv_{\mathsf{S}} \alpha_2 \lor \alpha_3 \lor \alpha_5$, then represent φ as the bitstring 01101
- we'll be interested in the following quantities:
 - $|\mathcal{F}|$: fragment size
 - $|\Pi_{\mathsf{S}}(\mathcal{F})|{:}$ partition size, i.e. bitstring length

KU LEUV

- ullet relation between fragment size (n) and bitstring length (ℓ)
 - *n*-range: $R_n := \{\ell \in \mathbb{N} \mid \lceil \log_2(n+2) \rceil \le \ell \le 2^{\frac{n}{2}} \}$
 - theorem: for all $\ell \in R_n$, there exists a fragment \mathcal{F} of size n and there exists a logical system S such that $|\Pi_{\mathsf{S}}(\mathcal{F})| = \ell$

(note: both the 'fragment parameter' $({\cal F})$ and the 'logic parameter' (S) are allowed to vary, i.e. are being quantified over)

- proposal: the logical context-sensitivity of a given fragment ${\mathcal F}$ with respect to a given set ${\mathcal S}$ of logical systems is positively correlated with the number of values in the $|{\mathcal F}|$ -range that are reached if
 - $\bullet\,$ the 'fragment parameter' is fixed to ${\cal F}$
 - $\bullet\,$ the 'logical system parameter' varies within ${\cal S}$

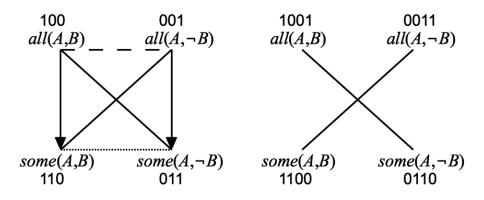
KU LEU

A Brief Illustration

- $\mathcal{F}^{\dagger} = \{all(A, B), all(A, \neg B), some(A, B), some(A, \neg B)\}\$ (the four usual categorical statements)
- $R_{|\mathcal{F}^{\dagger}|} = R_4 = \{\ell \in \mathbb{N} \mid \lceil \log_2(4+2) \rceil \le \ell \le 2^{\frac{4}{2}} \} = \{3, 4\}$
- \mathcal{S}^{\dagger} contains just two logical systems:
 - FOL: first-order logic
 - SYL: classical syllogistics (= FOL + additional axiom $\exists xAx$)
- one can show that $|\Pi_{\mathsf{FOL}}(\mathcal{F}^\dagger)|=4$ and $|\Pi_{\mathsf{SYL}}(\mathcal{F}^\dagger)|=3$
- by fixing the fragment parameter to \mathcal{F}^{\dagger} and varying the logic parameter over \mathcal{S}^{\dagger} , $\frac{2}{2} = 100\%$ of the values in the $|\mathcal{F}^{\dagger}|$ -range are reached

 \mathcal{F}^{\dagger} is maximally context-sensitive with respect to \mathcal{S}^{\dagger}

Context-Sensitivity in Aristotelian Diagrams – L. Demey



Context-Sensitivity in Aristotelian Diagrams – L. Demey

KU LEUVEN

1 Introduction

- 2 Aristotelian Diagrams and Context-Sensitivity
- 3 Measuring Context-Sensitivity of Aristotelian Diagrams

4 Case Study: Categorical Statements with Subject Negation

5 Conclusion

Context-Sensitivity in Aristotelian Diagrams - L. Demey

Introducing the New Fragment and Logical Systems

• extend the fragment and set of logics from the previous example:

•
$$\mathcal{F}^{\dagger} \subset \mathcal{F}^{\ddagger}$$
 $|\mathcal{F}^{\dagger}| = 4, |\mathcal{F}^{\ddagger}| = 8$
• $\mathcal{S}^{\dagger} \subset \mathcal{S}^{\ddagger}$ $|\mathcal{S}^{\dagger}| = 2, |\mathcal{S}^{\ddagger}| = 64$

 $\bullet \ \mathcal{F}^{\ddagger}$ contains the categorical statements with subject negation:

 $\begin{array}{lll} all(A,B) & all(A,\neg B) & some(A,B) & some(A,\neg B) \\ all(\neg A,B) & all(\neg A,\neg B) & some(\neg A,B) & some(\neg A,\neg B) \end{array}$

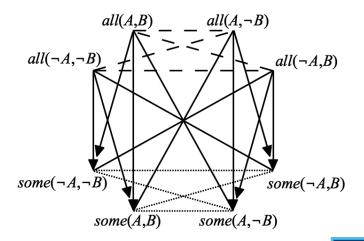
• six axioms:

• set of logics $\mathcal{S}^{\ddagger} := \{ \mathsf{FOL} + \mathcal{A} \mid \mathcal{A} \subseteq \{A1, A2, A3, A4, A5, A6\} \}$

Context-Sensitivity in Aristotelian Diagrams – L. Demey

Example

• Aristotelian octagon for \mathcal{F}^{\ddagger} in the logic FOL + $\{A1, A2, A3, A4\}$ (studied by Keynes & Johnson at the end of the 19th century)



Context-Sensitivity in Aristotelian Diagrams – L. Demey

- interactive application to illustrate this
 - available online: logicalgeometry.org/octagon context.html
 - heuristic role in ongoing research
- some theoretical results
 - easy calculation: $R_8 = \{4, 5, \dots, 15, 16\}$ \rightarrow 13 values \rightarrow 8 values
 - using application: fixing \mathcal{F}^{\ddagger} and varying within \mathcal{S}^{\ddagger}
 - "of all the bitstring lengths that might theoretically be necessary to represent an arbitrary 8-formula fragment with respect to an arbitrary logical system, about $\frac{8}{13} = 62\%$ is already necessary to represent the specific fragment \mathcal{F}^{\ddagger} with respect to the specific logics in $\mathcal{S}^{\ddagger "}$
 - highest value that is reached: $|\Pi_{\text{FOL}+\emptyset}(\mathcal{F}^{\ddagger})| = 16$
 - lowest value that is reached: $|\Pi_{\text{FOL}+\{A1,A2,A3,A4,A5,A6\}}(\mathcal{F}^{\ddagger})| = 5$
 - Keynes & Johnson: $|\Pi_{\text{FOL}+\{A1,A2,A3,A4\}}(\mathcal{F}^{\ddagger})| = 7$
 - inverse correlation between deductive strength and bitstring length (more axioms *comestion* shorter bitstrings)

Context-Sensitivity in Aristotelian Diagrams – L. Demey

DFMO!

KU LEUVEN

Introduction

- 2 Aristotelian Diagrams and Context-Sensitivity
- 3 Measuring Context-Sensitivity of Aristotelian Diagrams
- 4 Case Study: Categorical Statements with Subject Negation

Context-Sensitivity in Aristotelian Diagrams – L. Demey

Conclusion

- this talk:
 - explained logical context-sensitivity of Aristotelian diagrams
 - proposed a way to measure this context-sensitivity (bitstring lengths)
 - presented a case study: categorical statements with subject negation
 - illustrated it by means of an interactive application
- future work:
 - apply these results in historical analysis (e.g. Keynes/Johnson vs. Reichenbach)
 - investigate other sources of logical context-sensitivity in Aristotelian diagrams (e.g. contingency constraint)

Context-Sensitivity in Aristotelian Diagrams – L. Demey

KU LEUV

Thank you!

More info: www.logicalgeometry.org

KU LEUVEN

Context-Sensitivity in Aristotelian Diagrams – L. Demey