

The Continuity between Logic and Metalogic from the Perspective of Logical Geometry

Lorenz Demey

19-20 May 2016, Louvain-la-Neuve

Introduction

- Aristotelian diagrams (e.g. square of oppositions):
 - long and rich history in philosophical logic
 - in recent years:
 - ▶ used in epistemic logic, free logic, dynamic logic, connexive logic, etc.
 - ▶ used in linguistics, cognitive science, artificial intelligence, law, etc.
 - \Rightarrow Aristotelian diagrams as *lingua franca*
- logical geometry
 - not just: develop new applications of Aristotelian diagrams
 - but mainly: study them as objects of independent interest
 - Aristotelian diagrams give rise to various logico-linguistic phenomena:
 - lexicalization patterns
 - logic-sensitivity of Aristotelian diagrams
 - Boolean subtypes of Aristotelian diagrams
 - complementarities between Aristotelian diagrams
 - interaction with duality diagrams

Introduction

- until recently:
 - mainly object-logical Aristotelian diagrams
 - scattered throughout the literature, some metalogical diagrams (Béziau, Löbner, Seuren)
- aim of this talk: present a general framework
 - develop new metalogical Aristotelian diagrams
 - unifying perspective on existing metalogical Aristotelian diagrams
 - all the logico-linguistic phenomena known from object-logical Aristotelian diagrams also arise for metalogical Aristotelian diagrams

 \Rightarrow continuity between object- and metalogical Aristotelian diagrams

• this talk is based on joint work with Hans Smessaert

KULEU

Preliminaries

- 2 Aristotelian Diagrams for the Opposition Relations
- 3 Aristotelian Diagrams for the Implication Relations
- Aristotelian Diagrams for the Aristotelian Relations

Logic and Metalogic in Logical Geometry – L. Demey

KU LEUVEN

Preliminaries

- 2 Aristotelian Diagrams for the Opposition Relations
- 3 Aristotelian Diagrams for the Implication Relations
- 4 Aristotelian Diagrams for the Aristotelian Relations

5 Conclusion

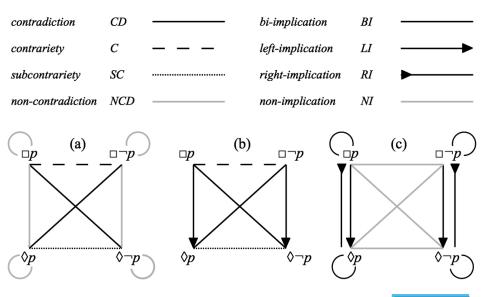
- the Aristotelian relations (in a Boolean logical system S): φ and ψ are S-contradictory iff $S \models \neg(\varphi \land \psi)$ and $S \models \neg(\neg \varphi \land \neg \psi)$ S-contrary iff $S \models \neg(\varphi \land \psi)$ and $S \not\models \neg(\neg \varphi \land \neg \psi)$ S-subcontrary iff $S \not\models \neg(\varphi \land \psi)$ and $S \not\models \neg(\neg \varphi \land \neg \psi)$ in S-subalternation iff $S \models \varphi \rightarrow \psi$ and $S \not\models \psi \rightarrow \varphi$
- this can be generalized to an arbitrary Boolean algebra \mathbb{B} : x and y are \mathbb{B} -contradictory iff $x \wedge_{\mathbb{B}} y = \bot_{\mathbb{B}}$ and $x \vee_{\mathbb{B}} y = \top_{\mathbb{B}}$ \mathbb{B} -contrary iff $x \wedge_{\mathbb{B}} y = \bot_{\mathbb{B}}$ and $x \vee_{\mathbb{B}} y \neq \top_{\mathbb{B}}$ \mathbb{B} -subcontrary iff $x \wedge_{\mathbb{B}} y \neq \bot_{\mathbb{B}}$ and $x \vee_{\mathbb{B}} y = \top_{\mathbb{B}}$ in \mathbb{B} -subalternation iff $x \wedge_{\mathbb{B}} y = x$ and $x \wedge_{\mathbb{B}} y \neq y$
- this subsumes both object- and metalogical uses:
 - object-logical: let \mathbb{B} be $\mathbb{B}(S)$ (Lindenbaum-Tarski algebra of S)
 - metalogical: let $\mathbb B$ be $\wp(\mathbb B(S))$ or $\wp(\mathbb B(S)\times\mathbb B(S))$

KU LEU

• the opposition relation	ns: $arphi$;	and ψ are		
S-contradictory	iff	$S \models \neg(\varphi \land \psi)$	and	$S\models \neg(\varphi \wedge \psi)$
S-contrary	iff	$S \models \neg(\varphi \land \psi)$	and	$S \not\models \neg(\varphi \land \psi)$
S-subcontrary	iff	$S \not\models \neg(\varphi \land \psi)$	and	$S \models \neg(\varphi \land \psi)$
S-noncontradictory	iff	$S \not\models \neg(\varphi \land \psi)$	and	$S \not\models \neg(\varphi \land \psi)$
• the implication relation in S-bi-implication in S-left-implication in S-right-implication in S-non-implication	iff iff n iff	and ψ are $S \models \varphi \rightarrow \psi$ $S \models \varphi \rightarrow \psi$ $S \not\models \varphi \rightarrow \psi$ $S \not\models \varphi \rightarrow \psi$ $S \not\models \varphi \rightarrow \psi$	and and	$\begin{array}{l} S \models \psi \to \varphi \\ S \not\models \psi \to \varphi \\ S \models \psi \to \varphi \\ S \not\models \psi \to \varphi \end{array}$

- motivation:
 - disentangling the Aristotelian relations into opposition and implication
 - the Aristotelian relations are informationally optimal between the opposition and implication relations (Smessaert & Demey 2014)

Opposition and Implication Relations



KU LEUVEN

9

KU LEUVEN

Preliminaries

2 Aristotelian Diagrams for the Opposition Relations

3 Aristotelian Diagrams for the Implication Relations

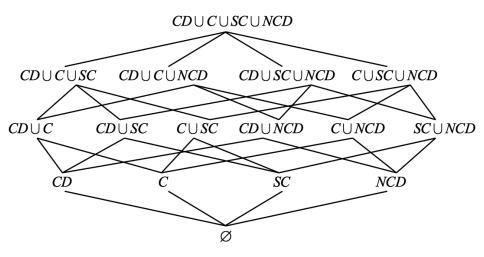
4 Aristotelian Diagrams for the Aristotelian Relations

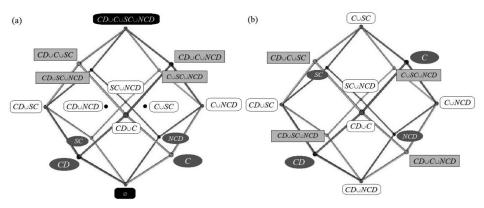
5 Conclusion

- logical system S (often left implicit)
- easy: every pair of formulas stands in exactly one opposition relation
- \bullet the opposition relations form a partition of $\mathbb{B}(S)\times\mathbb{B}(S)$
- the opposition relations can be viewed as atoms in a Boolean algebra
 - the elements of this Boolean algebra are $\bigcup \mathcal{X}$, for $\mathcal{X} \subseteq \{CD, C, SC, NCD\}$
 - it has $2^4 = 16$ elements
 - its bottom and top elements are \emptyset and $CD \cup C \cup SC \cup NCD = \mathbb{B}(S) \times \mathbb{B}(S)$
- visualizations of this Boolean algebra:
 - Hasse diagram: 2D or 3D rhombic dodecahedron (RDH)
 - Aristotelian diagram: rhombic dodecahedron

(close connection between Hasse RDH and Aristotelian RDH)

KU LEUV





Aristotelian RDH for the Opposition Relations

- Aristotelian RDH for the opposition relations
 ⇒ largest metalogical diagram so far!
- there are many object-logical Aristotelian RDHs
 - e.g. propositional logic, modal logic S5, public announcement logic, etc.
 - $\bullet \$ 4-partition of $\mathbb{B}(S)\times \mathbb{B}(S)$ vs. 4-partition of $\mathbb{B}(S)$

OG	CD	C	SC	NCD
CPL	$p \wedge q$	$p \wedge \neg q$	$ eg p \wedge q$	$\neg p \land \neg q$
S5	$\Box p$	$p \land \Diamond \neg p$	$\neg p \land \Diamond p$	$\Box \neg p$
PAL	$\langle !p \rangle Kq$	$\neg p \wedge K[!p]q$	$\neg p \land \neg K[!p]q$	$\langle !p \rangle \neg Kq$

- the internal structure of (object-logical) RDH has been extensively studied (Béziau, Moretti, Smessaert, LD):
 - it contains 18 classical Aristotelian squares
 - it contains 3 degenerate Aristotelian squares
 - it contains 4 weak Jacoby-Sesmat-Blanché hexagons
 - it contains 6 strong JSB hexagons
 - it contains 12 Sherwood-Czezowski hexagons
 - it contains 6 Buridan octagons
 - complementarity strong JSB hexagons/Buridan octagons
 - \Rightarrow all these properties straightforwardly carry over from the object-logical to the metalogical RDH

KU LEU

 \bullet strong and weak notions of (sub)contrariety: φ and ψ are

strongly S-contrary	iff	$S \models \neg(\varphi \land \psi)$	and	$S \not\models \varphi \lor \psi$
weakly S-contrary	iff	$S\models \neg(\varphi \wedge \psi)$		
strongly S-subcontrary	iff	$S \not\models \neg(\varphi \land \psi)$	and	$S\models\varphi\lor\psi$
weakly S-subcontrary	iff			$S\models\varphi\lor\psi$

- Humberstone: "traditionalist approach" vs "modernist approach"
- connection with the opposition relations:

$$C_s = C \qquad SC_s = SC$$

 $C_w = CD \cup C \qquad SC_w = CD \cup SC$

• note that $CD = C_w \cap SC_w$

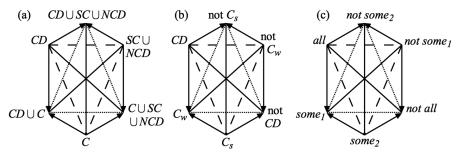
Logic and Metalogic in Logical Geometry – L. Demey

KU LEUV

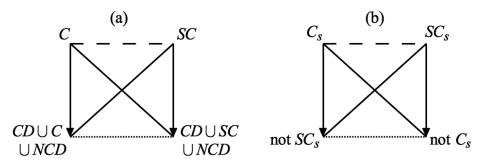
A Strong JSB Hexagon for Strong and Weak Contrariety

16

KU LEUVEN

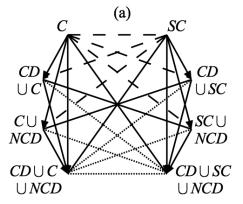


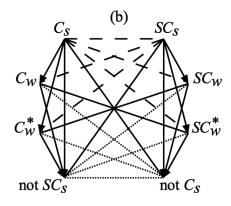
- pragmatic perspective:
 - $\langle CD, C_w \rangle$ forms a Horn scale
 - saying C_w triggers the scalar implicature not-CD
 - total meaning becomes: C_w but not CD, i.e. C_s
- lexicalization perspective:
 - co-lexicalization of weak and strong contrariety
 - cf. co-lexicalization of unilateral and bilateral some (Seuren & Jaspers)



- the subalternation from C_s to not- SC_s can be split up by putting C_w in between
- the subalternation from SC_s to not- C_s can be split up by putting SC_w in between

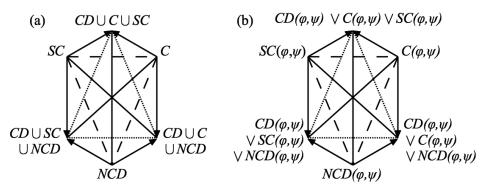
KU LEL





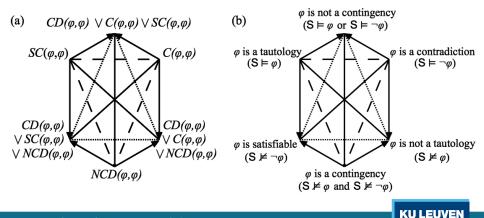


- in terms of relations
- ullet in terms of statements about formulas φ , ψ

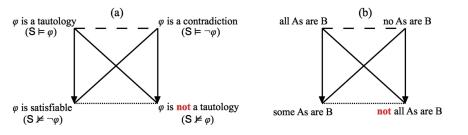


A Weak JSB Hexagon inside the Aristotelian RDH

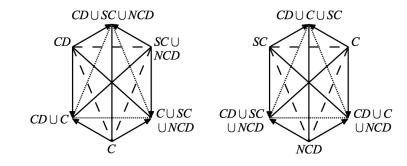
- what happens if we fill in the same formula twice (i.e. φ = ψ)?
 (in terms of relations, this corresponds to replacing R with R ∩ Δ_{B(S)})
- we obtain a hexagon for some well-known metalogical notions (Béziau)



- lexicalization: tautology, satisfiable, contradictory vs non-tautology
- non-lexicalization of the O-corner of the square (Horn)
- analogues at the object-language level:
 - all, some, no vs not-all
 - necessary, possible, impossible vs not-necessary
 - always, sometimes, never vs not-always



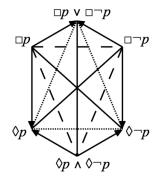
KU LEUVEN

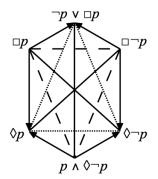


- isomorphic qua Aristotelian diagrams (both are JSB hexagons) (same configuration of Aristotelian relations)
- yet: Boolean differences
 - the left one is closed under the Boolean operations
 - the right one is not
 - ⇒ a given type of Aristotelian diagram (e.g. JSB hexagon) can have various Boolean subtypes (e.g. strong/weak)

strong JSB weak JSB

- this phenomenon is well-known from object-logical Aristotelian diagrams
- \bullet example: strong vs weak JSB hexagon in the modal logic D





KU LEUVEN

KU LEUVEN

Preliminaries

2 Aristotelian Diagrams for the Opposition Relations

3 Aristotelian Diagrams for the Implication Relations

4 Aristotelian Diagrams for the Aristotelian Relations

5 Conclusion

• the implication relations closely resemble the opposition relations

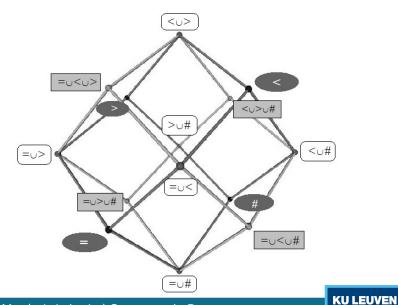
$CD(arphi,\psi)$	iff	$BI(\varphi, \neg \psi)$
$C(arphi,\psi)$	iff	$LI(\varphi, \neg \psi)$
$SC(arphi,\psi)$	iff	$RI(\varphi, \neg \psi)$
$NCD(arphi,\psi)$	iff	$NI(\varphi, \neg \psi)$

- \bullet the implication relations form a partition of $\mathbb{B}(S)\times\mathbb{B}(S)$
 - \Rightarrow atoms of a Boolean algebra
 - \Rightarrow Hasse RDH for this Boolean algebra
 - \Rightarrow Aristotelian RDH for this Boolean algebra
 - \Rightarrow study the subdiagrams of this Aristotelian RDH

- consider an arbitrary partial order \leq on some set X
- some notions:
 - $x < y :\Leftrightarrow (x \le y \text{ and } x \ne y)$
 - $x > y :\Leftrightarrow (x \ge y \text{ and } x \ne y)$
 - $x \# y :\Leftrightarrow \operatorname{not}(x < y \text{ or } x > y)$
- \bullet easy to show: =, <, >, # form a partition of $S\times S$
- if \leq happens to be the \models -relation on $\mathbb{B}(S)$:
 - = corresponds to BI
 - < corresponds to LI
 - > corresponds to RI
 - # corresponds to NI

KU LEU

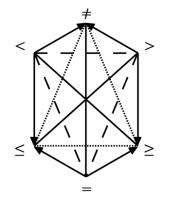
An Aristotelian RDH for Partial Orders



- from partial order to total order:
 - $\bullet\,$ impose the additional axiom of totality: $\forall x,y\in S:x\leq y \text{ or } x\geq y$
 - equivalently, impose the assumption that $\#=\emptyset$
- effect on the Aristotelian RDH: pairwise collapses:

RDH		collapse	collapse		RDH
=	\rightarrow	=	$\langle \cup \rangle$	\leftarrow	< U > U #
$= \cup \#$	\nearrow			K	$<\cup>$
<	\rightarrow	<	$=$ \cup >	\leftarrow	= U > U #
$< \cup \#$	\nearrow			K	$= \cup >$
>	\rightarrow	>	$= \cup <$	\leftarrow	$= \cup < \cup \#$
$> \cup \#$	\nearrow			K	$= \cup <$
#	\rightarrow	[Ø]	$[=\cup <\cup >]$		
[Ø]	\nearrow			K	$[=\cup <\cup >\cup \#]$

- the Aristotelian RDH collapses into a strong JSB hexagon
- this hexagon was already known by Blanché (= the 'B' in 'JSB')



- this is an example of the 'logic-sensitivity' of Aristotelian diagrams
- well-known from object-logical Aristotelian diagrams (e.g. modal logic)
- sensitivity to the underlying axiomatization of the ordering relation:
 - partial order: 4-partition: = / > / < / #RDH **JSB**
 - total order: 3-partition: = / > / <
- sensitivity to the underlying modal logic:
 - modal logic K: 4-partition: $\Diamond \top \land \Box p / \Diamond p \land \Diamond \neg p / \Diamond \top \land \Box \neg p / \Box \bot$ RDH
 - modal logic D: 3-partition: $\Box p / \Diamond p \land \Diamond \neg p / \Box \neg p$

JSB

KU LEUV

Preliminaries

- 2 Aristotelian Diagrams for the Opposition Relations
- 3 Aristotelian Diagrams for the Implication Relations
- Aristotelian Diagrams for the Aristotelian Relations

5 Conclusion

Logic and Metalogic in Logical Geometry – L. Demey

Mixing Opposition and Implication Relations

- \bullet Aristotelian = hybrid between opposition/implication
 - \Rightarrow some Aristotelian diagrams for opposition/implication relations can also be viewed as Aristotelian diagrams for the Aristotelian relations

(e.g. Buridan octagon for strong/weak (sub)contrariety)

- but: in each of these diagrams:
 - either only opposition relations
 - or only implication relations

• now: diagrams that contain both opposition and implication relations

KU LEUV

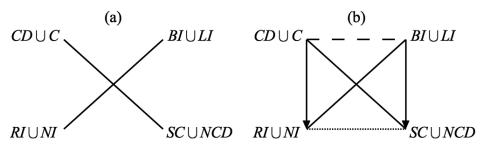
• already in the 80s, Löbner claimed that the following four relations form an Aristotelian square:

compatibility	$\not\models \neg(\varphi \land \psi)$	$SC \cup NCD$
implication	$\models \varphi \to \psi$	$BI \cup LI$
contrariety	$\models \neg(\varphi \land \psi)$	$CD \cup C$
non-implication	$\not\models \varphi \to \psi$	$RI \cup NI$

 \bullet note that these are weak opposition and implication relations: $SC^*_w, LI_w, C_w, RI^*_w$

- these four indeed form a square, but this square is
 - classical iff the relations' first argument (φ) is assumed to be satisfiable
 - degenerated otherwise (Béziau: "an X of opposition")

KU LEU

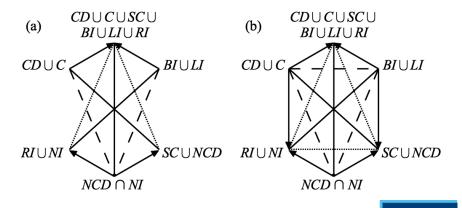


- another illustration of the logic-sensitivity of Aristotelian diagrams
- object-logical example: the four categorical statements form a
 - classical square iff the subject term is assumed to be non-empty
 - degenerate square otherwise
- first argument is satisfiable // first term has existential import

KU LEU

Seuren's Aristotelian Hexagon

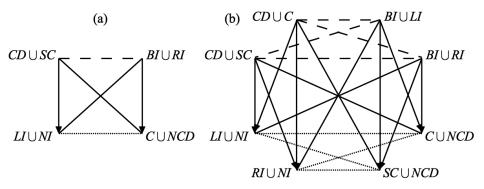
- Seuren (2014): 6 relations, forming a JSB hexagon \Rightarrow translate into opposition/implication terminology
 - a JSB hexagon iff the relations' first argument is satisfiable
 - a U4 (= partially degenerated JSB) hexagon otherwise



Logic and Metalogic in Logical Geometry – L. Demey

- recall Löbner's relations:
 - 4 weak opposition/implication relations: $SC^*_w, LI_w, C_w, RI^*_w$
 - classical square iff $\varphi \neq \bot$
- completely analogously:
 - 4 other weak opposition/implication relations: $SC_w, LI_w^*, C_w^*, RI_w$
 - classical square iff $\varphi \neq \top$
- combination of these two squares:
 - all 8 weak opposition/implication relations together
 - minimal assumption: contingency of φ ($\varphi \neq \bot$ and $\varphi \neq \top$)
 - $\bullet\,$ interesting if we also assume contingency of $\psi\,$
- this is the metalogical analogue of a well-known object-logical octagon
 - syllogistics with subject negation
 - Keynes, Johnson, Hacker, Reichenbach

KU LEU



Preliminaries

- 2 Aristotelian Diagrams for the Opposition Relations
- 3 Aristotelian Diagrams for the Implication Relations
- 4 Aristotelian Diagrams for the Aristotelian Relations

Logic and Metalogic in Logical Geometry – L. Demey

Conclusion

- construct metalogical Aristotelian diagrams (in a mathematically precise sense)
- observed various connections and phenomena:
 - 4-partition of opposition relations, giving rise to Aristotelian RDH
 - internal structure of RDH (e.g. subdiagrams, complementarities)
 - unifying perspective on earlier work (e.g. Béziau, Seuren, Löbner)
 - lexicalization patterns (e.g. strong/weak contrariety)
 - logic-dependence (e.g. satisfiability of first argument)
 - Boolean subtypes of Aristotelian diagrams (e.g. strong/weak JSB)
- these are the counterparts of similar (and well-studied) connections and phenomena for object-logical Aristotelian diagrams

⇒ fundamental continuity between object- and metalogical Aristotelian diagrams!

Logic and Metalogic in Logical Geometry – L. Demey

KU LEUV

KU LEUVEN

Thank you!

Lorenz Demey & Hans Smessaert, Metalogical Decorations of Logical Diagrams, *Logica Universalis*, forthcoming.

www.logicalgeometry.org