

Shape Heuristics in Aristotelian Diagrams

Lorenz Demey and Hans Smessaert

Shapes 3.0 Workshop, Larnaca, 2 November 2015

2

KU LEUVEN

1 Introduction

- 2 Aristotelian Diagrams and Shape Heuristics
- 3 Aristotelian Diagrams for Boolean Algebras
- 4 Complementarities between Aristotelian Diagrams

Shape Heuristics in Aristotelian Diagrams - L. Demey & H. Smessaert

Introduction

2 Aristotelian Diagrams and Shape Heuristics

3 Aristotelian Diagrams for Boolean Algebras

4 Complementarities between Aristotelian Diagrams

Conclusion

Shape Heuristics in Aristotelian Diagrams – L. Demey & H. Smessaert

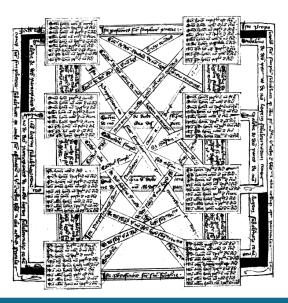
Introduction

- Aristotelian diagram
 - compact visual representation
 - of the elements of some logical/lexical/conceptual field
 - and the logical relations holding between them
- most widely known example: square of oppositions
- intellectual background
 - rich history in philosophical logic
 - starting in the 2nd century AD (Apuleius)
 - especially popular in medieval logic
 - today: used in various disciplines
 - cognitive science, linguistics, law...
 - computer science, neuroscience...

⇒ Aristotelian diagrams as a *lingua franca* for an interdisciplinary research community concerned with logical reasoning

Shape Heuristics in Aristotelian Diagrams - L. Demey & H. Smessaert

Shape Heuristics in Aristotelian Diagrams – L. Demey & H. Smessaert



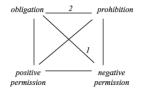
Shape Heuristics in Aristotelian Diagrams – L. Demey & H. Smessaert

The European Journal of International Law Vol. 17 no.2 © EJIL 2006; all rights reserved

The Definition of 'Norm Conflict' in International Law and Legal Theory

Erich Vranes*

The possible set of inter-relations can be illustrated by using the so-called deontic square, which in fact relies on the logic square known since Greek antiquity,⁸⁵ and which was arguably first used in deontic logic by Bentham:⁸⁶



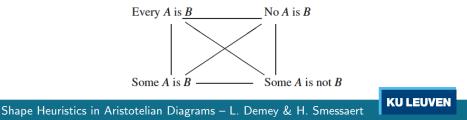
Shape Heuristics in Aristotelian Diagrams - L. Demey & H. Smessaert

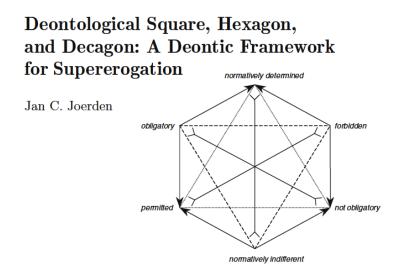
Universal vs. particular reasoning: a study with neuroimaging techniques

V. MICHELE ABRUSCI*, Dipartimento di Filosofia, Università di Roma Tre, Via Ostiense 234, 00146 Roma, Italy

CLAUDIA CASADIO[†], Dipartimento di Filosofia, Università di Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy

M. TERESA MEDAGLIA[‡] and CAMILLO PORCARO[§], Inst. Neuroscience, Newcastle University, Medical School Framlington Place, Newcastle upon Tyne, NE2 4HH, UK





Shape Heuristics in Aristotelian Diagrams - L. Demey & H. Smessaert

- research project: logical geometry
- study new decorations of Aristotelian diagrams
 - historical case studies (e.g. Avicenna, Ockham, Keynes)
 - applications in various fields (e.g. philosophy of language, AI)
- study Aristotelian diagrams as objects of independent interest
 - abstract-logical aspects: information, context-sensitivity, etc.
 - visual-geometrical aspects: dimension, perpendicularity, collinearity, etc.

 \Rightarrow shape characteristics of Aristotelian diagrams!

• aim of this talk: argue that Aristotelian diagrams' shape can have great heuristic value (based on earlier 'geometric' work in logical geometry)

Shape Heuristics in Aristotelian Diagrams - L. Demey & H. Smessaert

KU LEUVEN

1 Introduction

2 Aristotelian Diagrams and Shape Heuristics

3 Aristotelian Diagrams for Boolean Algebras

4 Complementarities between Aristotelian Diagrams

5 Conclusion

Shape Heuristics in Aristotelian Diagrams - L. Demey & H. Smessaert

\bullet the Aristotelian relations: given logical system S, formulas φ and ψ are

contradictory	iff	$S\models \neg(\varphi \wedge \psi)$	and	$S\models \neg(\neg\varphi\wedge\neg\psi)$
contrary	iff	$S\models \neg(\varphi\wedge\psi)$	and	$S \not\models \neg (\neg \varphi \land \neg \psi)$
subcontrary	iff	$S \not\models \neg(\varphi \land \psi)$	and	$S\models \neg(\neg\varphi\wedge\neg\psi)$
in subalternation	iff	$S\models\varphi\rightarrow\psi$	and	$S \not\models \psi \to \varphi$

- informal explanation:
 - contradiction, (sub)contrariety: formulas can(not) be true/false together
 - subalternation: one-way logical entailment
- Aristotelian diagrams only contain contingent formulas
 - $\bullet\,$ tautology (\top) and contradiction (\bot) are not present in the diagram
 - alternative view: ⊤ and ⊥ coincide in the center of the diagram (⇒ not a separate vertex) (Sauriol in the 1950s, Smessaert in the early 2000s)

Shape Heuristics in Aristotelian Diagrams - L. Demey & H. Smessaert

Informational and Computational Equivalence

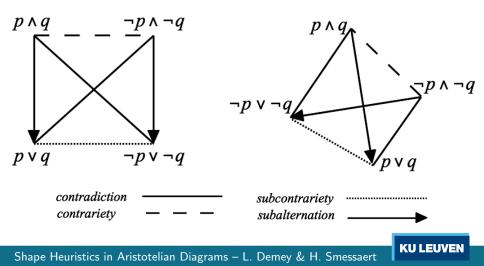
- Aristotelian diagram crucially depends on formulas and logical system S
 - different formulas \Rightarrow different diagram
 - different logical system \Rightarrow different diagram
- suppose that formulas and logical system have been fixed
 - logical properties of the diagram are fully determined
 - visual-geometric properties still seriously underspecified
 ⇒ various design choices possible
- multiple diagrams for the same formulas and logical system
 - informationally equivalent: contain the same logical information
 - not necessarily computationally/cognitively equivalent: one diagram might be more helpful/useful than the other ones (ease of access to the information contained in the diagram)

Jill Larkin and Herbert Simon, 1987 Why a Diagram is (Sometimes) Worth 10.000 Words

Shape Heuristics in Aristotelian Diagrams - L. Demey & H. Smessaert

Example: Square (2D) versus Tetrahedron (3D)

- four formulas: $p \land q, p \lor q, \neg p \land \neg q, \neg p \lor \neg q$
- logical system: classical propositional logic (CPL)



- how to choose among informationally equivalent diagrams?
- shape can have powerful heuristic function
- consider the set(s) of formulas represented by Aristotelian diagram(s)
- these have various properties and relations amongst each other
- in good (cognitively helpful) Aristotelian diagrams, the diagrams' shape helps to visualize these properties and relations

[abstract-logical] [visual-geometric]

 $\begin{array}{rcl} \mbox{properties, relations} & \longleftarrow \mbox{ isomorphism} & \longrightarrow & \mbox{shape characteristics} \\ \mbox{among sets of formulas} & \mbox{ congruity} & \mbox{ of the diagrams} \end{array}$

Corin Gurr, Barbara Tversky

Shape Heuristics in Aristotelian Diagrams - L. Demey & H. Smessaert

- isomorphism between
 - abstract-logical subject matter
 - visual-geometric (shape) properties
- good diagram simultaneously engages the user's logical and visual cognitive systems
 - \Rightarrow facilitate inferential or heuristic free rides (Atsushi Shimojima)
 - logical properties are directly manifested in the diagram's visual features
 - user can grasp these properties with little cognitive effort

"you don't have to reason about it, you just see it"

- how to choose between informationally equivalent Aristotelian diagrams D1 and D2?
- $\bullet \ informationally \ equivalent \Rightarrow same \ logical \ subject \ matter$
- differerent shapes
 - shape of D1 more clearly isomorphic to subject matter
 - shape of D2 less clearly isomorphic to subject matter
- D1 will trigger more heuristics than D2
- ceteris paribus, D1 will be a more effective visualization than D2
 - \Rightarrow D1 and D2 are not computationally/cognitively equivalent
- remainder of the talk: two (series of) case studies
 - Aristotelian diagrams for entire Boolean algebras
 - complementarities between Aristotelian diagrams

Shape Heuristics in Aristotelian Diagrams - L. Demey & H. Smessaert

KU LEUVEN

Introduction

2 Aristotelian Diagrams and Shape Heuristics

3 Aristotelian Diagrams for Boolean Algebras

4 Complementarities between Aristotelian Diagrams

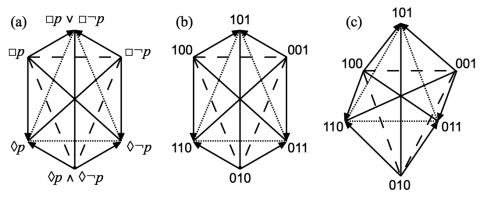
5 Conclusion

Shape Heuristics in Aristotelian Diagrams - L. Demey & H. Smessaert

- Aristotelian diagrams that are Boolean closed
- \bullet Aristotelian diagrams for entire Boolean algebras (except for $\top,\,\perp)$
- finite Boolean algebra \Rightarrow bitstring representation
- first interesting case: Boolean algebra \mathbb{B}_3 (bitstrings of length 3)
 - in total $2^3 = 8$ formulas/bitstrings
 - after leaving out op and op (i.e. 111 and 000): 6 formulas/bitstrings
- Jacoby-Sesmat-Blanché (JSB) diagram
 - most common visualization: hexagon (2D)
 - alternative visualization: octahedron (3D)

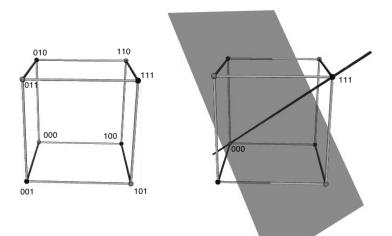
 \Rightarrow informationally equivalent, but also computationally equivalent?

Shape Heuristics in Aristotelian Diagrams - L. Demey & H. Smessaert

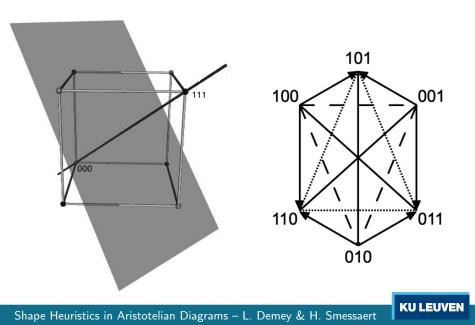


Shape Heuristics in Aristotelian Diagrams - L. Demey & H. Smessaert

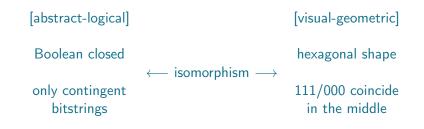
- Boolean algebra \mathbb{B}_n (bitstrings of length n)
 - can be represented as *n*-dimensional hypercube ("Boolean cube")
 - bitstrings not only as logical entities, but also as coordinates of vertices in *n*-dimensional space
- in case n = 3, we have an 'ordinary' cube (3D)
- vertex-first projection of this cube along the 111/000 axis \Rightarrow result: JSB hexagon



Shape Heuristics in Aristotelian Diagrams – L. Demey & H. Smessaert



- JSB hexagon 🚧 (projection of) Boolean cube
- $\bullet\,$ projection axis is defined by the non-contingent bitstrings 111/000
 - 111 and 000 not part of the hexagon
 - 111 and 000 coincide in the center of the hexagon



Shape Heuristics in Aristotelian Diagrams - L. Demey & H. Smessaert

- \bullet two common types of diagrams for \mathbb{B}_3
 - Aristotelian diagram (JSB) (hexagon, octahedron...)
 - Hasse diagram (hexagon, ...)
 - Aristotelian hexagon = projection of cube along 111/000 axis
 - Hasse hexagon = projection of cube along any other axis (e.g. 101/010)
- strong connection between Aristotelian and Hasse diagram for \mathbb{B}_3 \Rightarrow unified explanation for their similarities and differences
- hexagonal JSB diagram for B₃ has several cognitive advantages (octahedral JSB diagram for B₃ lacks these advantages)
- \bullet hexagonal and octahedral JSB diagram for \mathbb{B}_3
 - informationally equivalent
 - certainly not computationally equivalent

Shape Heuristics in Aristotelian Diagrams - L. Demey & H. Smessaert

KU LEUVEN

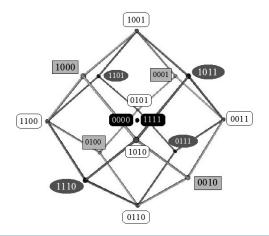
1 Introduction

- 2 Aristotelian Diagrams and Shape Heuristics
- 3 Aristotelian Diagrams for Boolean Algebras
- 4 Complementarities between Aristotelian Diagrams

5 Conclusion

Shape Heuristics in Aristotelian Diagrams - L. Demey & H. Smessaert

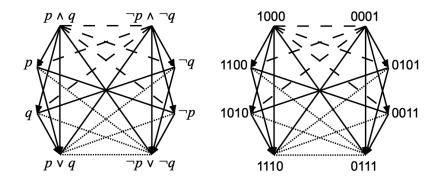
- analogous story
 - $\bullet\,$ various Aristotelian diagrams for \mathbb{B}_4
 - best one: rhombic dodecahedron (RDH) = projection of 4D hypercube



Shape Heuristics in Aristotelian Diagrams - L. Demey & H. Smessaert

Buridan Diagram for Propositional Logic

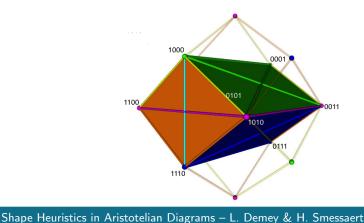
- Buridan diagram = widely studied type of Aristotelian diagram
- example: Buridan diagram for propositional logic
- can be represented by bitstrings of length 4



Shape Heuristics in Aristotelian Diagrams – L. Demey & H. Smessaert

Buridan Diagram: Octagon (2D) vs. Rhombicube (3D)

- Buridan diagram: usually visualized by means of an **octagon**
- representable by bitstrings of length 4
 ⇒ subdiagram of the RDH for B₄: rhombicube
- informationally equivalent, but also computationally equivalent?



- $\bullet \ \ \text{rhombicube:} \ \ \text{level} \leftarrow \text{isomorphism} \longrightarrow \text{verticality}$
 - level-1 bitstrings (1000, 0001) at the top of the diagram
 - level-2 bitstrings (1100, 1010, 0101, 0011) in the middle
 - level-3 bitstrings (1110, 0111) at the bottom of the diagram
 - \Rightarrow cannot be achieved in a 2D octagon visualization
- rhombicube = subdiagram of RDH (shared rhombic faces)
 - via its shape, the rhombicube establishes a link with RDH (\mathbb{B}_4)
 - suggests that it can be represented by bitstrings of length 4
- rhombicube stands in geometric complementarity with hexagon
 - \Rightarrow reflects an underlying logical complementarity between Buridan and JSB diagrams

- logical complementarity between Buridan diagram and JSB diagram
 - \mathbb{B}_4 has 16 bitstrings (14 after excluding 1111 and 0000)
 - 8 bitstrings have \neq values in bit positions 1 and 4 \Rightarrow Buridan diagram
 - 8 bitstrings have = values in bit positions 1 and 4;
 - 6 after excluding 1111 and 0000

1 00 0	0 11 1	1001	0 11 0
0 00 1	1 11 0	1 10 1	0 01 0
1 10 0	0 01 1	1 01 1	0 10 0
0 10 1	1 01 0	(0000)	(1 11 1)

- geometric complementarity between rhombicube and hexagon
 - Buridan embedded inside RDH: rhombicube
 - JSB embedded inside RDH: hexagon
- rhombicube visualization of Buridan diagram
 - geometric complementarity with JSB hexagon
 - reminder of underlying logical complementarity

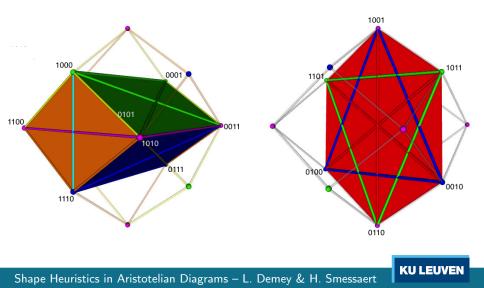
Shape Heuristics in Aristotelian Diagrams – L. Demey & H. Smessaert

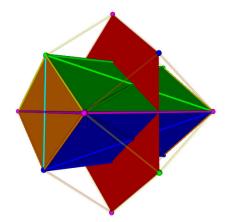
 \Rightarrow partition of RDH

KU LEUVE

 \Rightarrow JSB diagram

Logico-Geometrical Complementarity: Rhombicube/Hexagon 32





KU LEUVEN

Shape Heuristics in Aristotelian Diagrams - L. Demey & H. Smessaert

34

1 Introduction

- 2 Aristotelian Diagrams and Shape Heuristics
- 3 Aristotelian Diagrams for Boolean Algebras
- 4 Complementarities between Aristotelian Diagrams

Shape Heuristics in Aristotelian Diagrams – L. Demey & H. Smessaert

Conclusion

- several diagrams for a given set of formulas and logical system:
 - informationally equivalent, but not always computationally equivalent
 - diagrams' shape can play a heuristic role
- two (series of) case studies (building on earlier work):
 - Aristotelian diagrams for entire Boolean algebras
 - complementarities between Aristotelian diagrams
- future work: investigate the heuristic role of shape in Aristotelian diagrams that are not covered by the present series of case studies (e.g. how to visualize a Sherwood-Czezowski diagram?)

Thank you!

More info: www.logicalgeometry.org

Shape Heuristics in Aristotelian Diagrams – L. Demey & H. Smessaert