

The Interaction between Logic and Geometry in Aristotelian Diagrams

Lorenz Demey and Hans Smessaert

- 2 Informational and Computational Equivalence
- 3 Logic versus Geometry in Aristotelian Diagrams
- Aristotelian Diagrams with 2 PCDs
- 5 Aristotelian Diagrams with 3 PCDs
- 6 Conclusion

Logic & Geometry in Aristotelian Diagrams - L. Demey & H. Smessaert

Informational and Computational Equivalence

3 Logic versus Geometry in Aristotelian Diagrams

4 Aristotelian Diagrams with 2 PCDs

5 Aristotelian Diagrams with 3 PCDs

6 Conclusion

Logic & Geometry in Aristotelian Diagrams – L. Demey & H. Smessaert

- Aristotelian diagram: visualization of
 - some formulas/expressions from a given logical/conceptual field
 - the logical relations holding between them
- rich history in philosophical logic (Aristotle); today also used in
 - linguistics (e.g. lexicalization, pragmatics)
 - legal studies (e.g. relations between legal and deontic notions)
 - cognitive science (e.g. fMRI studies on quantifier processing)
 - computer science (e.g. knowledge representation frameworks)
 - etc. . . .

 \Rightarrow lingua franca for interdisciplinary research community

- Iogical geometry:
 - study Aristotelian diagrams as objects of independent interest
 - abstract-logical aspects
 - visual-geometrical aspects

Logic & Geometry in Aristotelian Diagrams - L. Demey & H. Smessaert

- our starting point today is the following observation:
 - very often, different authors use vastly different Aristotelian diagrams to visualize one and the same logical structure
 - even after all the logical parameters of a structure have been fixed, there are still several design choices to be made when drawing the diagram
- question: are some of these diagrams 'better' than others?
 - achieve greater positive impact on readers' comprehension of the underlying logical structure
 - cf. the communicative role of Aristotelian diagrams
- goal: propose and illustrate a theory for dealing with this question

2 Informational and Computational Equivalence

3 Logic versus Geometry in Aristotelian Diagrams

- 4 Aristotelian Diagrams with 2 PCDs
- 5 Aristotelian Diagrams with 3 PCDs

6 Conclusion

Logic & Geometry in Aristotelian Diagrams – L. Demey & H. Smessaert

The Aristotelian relations

- logical system S with Boolean connectives
- \bullet two formulas φ and ψ are said to be

S-contradictory	iff	$S\models \neg(\varphi\wedge\psi)$	and	$S \models \neg (\neg \varphi \land \neg \psi)$
S-contrary	iff	$S\models \neg(\varphi\wedge\psi)$	and	$S \not\models \neg (\neg \varphi \land \neg \psi)$
S-subcontrary	iff	$S \not\models \neg(\varphi \land \psi)$	and	$S \models \neg (\neg \varphi \land \neg \psi)$
in S-subalternation	iff	$S\models\varphi\rightarrow\psi$	and	$S \not\models \psi \to \varphi$

• two formulas are S-unconnected iff they they do not stand in any Aristotelian relation

Logic & Geometry in Aristotelian Diagrams - L. Demey & H. Smessaert

- oldest and most widely known: square of opposition
- throughout history: many other, larger Aristotelian diagrams
 ⇒ classification into different families
- a small sample of this classification:
 - classical square (square of opposition)
 - degenerate square (X of opposition)
 - Jacoby-Sesmat-Blanché (JSB) hexagon
 - Sherwood-Czeżowski (SC) hexagon
 - unconnectedness-4 (U4) hexagon
 - Béziau octagon
 - Buridan octagon
 - Moretti octagon
 - Keynes-Johnson octagon

KU LEUVEN

Logic & Geometry in Aristotelian Diagrams - L. Demey & H. Smessaert

- Aristotelian families are defined in terms of logical properties
 - Aristotelian relations
 - classical square: 2 CD, 1 C, 1 SC, 2 SA
 - degenerate square: 2 CD
 - Boolean structure
 - classical square: Boolean closure is (isomorphic to) \mathbb{B}_3
 - degenerate square: Boolean closure is (isomorphic to) \mathbb{B}_4
- diagrams belonging to different Aristotelian families are not *informationally equivalent* (Larkin & Simon)
 - visualize different logical structures
 - differences between diagrams <---> differences between logical structures

- if we focus on diagrams belonging to the same Aristotelian family, we notice that different authors still use vastly different diagrams
- some examples: next slides
- these diagrams are *informationally equivalent*, but not *computationally equivalent* (Larkin & Simon)
 - visualize one and the same logical structure
 - visual differences might influence diagrams' effectiveness (user comprehension of the underlying logical structure)

- Informational and Computational Equivalence
- 3 Logic versus Geometry in Aristotelian Diagrams
 - 4 Aristotelian Diagrams with 2 PCDs
 - 5 Aristotelian Diagrams with 3 PCDs
 - 6 Conclusion

Logic & Geometry in Aristotelian Diagrams – L. Demey & H. Smessaert

Setup

- two assumptions (satisfied by nearly all diagrams in the literature):
 - the fragment is closed under negation (if $arphi \in \mathcal{F}$ then $\neg arphi \in \mathcal{F}$)
 - negation is visualized by means of central symmetry $(\varphi \text{ and } \neg \varphi \text{ occupy diametrically opposed points in the diagram})$
- since the fragment is closed under negation, it can be seen
 - as consisting of 2n formulas
 - as consisting of n pairs of contradictory formulas (PCDs)

Logic & Geometry in Aristotelian Diagrams – L. Demey & H. Smessaert

Configurations of PCDs

- number of configurations of n PCDs: $2^n \times n!$
 - the $n\ {\rm PCDs}$ can be ordered in n! different ways
 - each of the n PCDs has 2 orientations: $(\varphi,\neg\varphi)$ vs. $(\neg\varphi,\varphi)$
- strictly based on the logical properties of the fragment
- independent of any concrete visualization
- example: for n = 2 PCDs, there are $2^n \times n! = 8$ configurations

- $\bullet\,$ polygon/polyhedron $\mathcal P$ to visualize an n-PCD logical fragment
- $\bullet \ \mathcal{P}$ has a symmetry group $\mathcal{S}_{\mathcal{P}}$
 - $\bullet\,$ contains the reflectional and rotational symmetries of ${\cal P}\,$
 - \bullet the cardinality $|\mathcal{S}_{\mathcal{P}}|$ measures how 'symmetric' \mathcal{P} is
- strictly based on the geometrical properties of the polygon/polyhedron
- independent of the logical structure that is being visualized
- example: a square has 8 reflectional/rotational symmetries, i.e. $|S_{sq}| = 8$

- \bullet visualize $\mathit{n}\text{-}\mathsf{PCD}$ fragment by means of $\mathcal P$
 - logical number: $2^n \times n!$
 - geometrical number: $|\mathcal{S}_{\mathcal{P}}|$
- $2^n \times n! \ge |\mathcal{S}_{\mathcal{P}}|$ (typically: > instead of \ge)
 - every symmetry of ${\cal P}$ can be seen as the result of permuting/changing the orientation of the PCDs
 - but typically not vice versa

- example
 - $\bullet\,$ reflect the hexagon around the axis defined by $\Box p$ and $\Diamond \neg p$
 - permute the PCDs $(\Diamond p, \Box \neg p)$ and $(\Box p \lor \Box \neg p, \Diamond p \land \Diamond \neg p)$

- example
 - change the orientation of the PCD $(\Box p \lor \Box \neg p, \Diamond p \land \Diamond \neg p)$
 - no reflectional/rotational symmetry

Fundamental forms

- \bullet work up to symmetry: $\frac{2^n\times n!}{|\mathcal{S}_{\mathcal{P}}|}$ fundamental forms
 - diagrams with same fundamental form
 ⇒ reflectional/rotational variants of each other
 - diagrams with different fundamental forms:
 ⇒ not reflectional/rotational variants of each other
- ullet one $\mathit{n}\text{-}\mathsf{PCD}$ fragment, two different visualizations $\mathcal P$ and $\mathcal P'$
 - ${\mathcal P}$ is less symmetric than ${\mathcal P}'$
 - $\Leftrightarrow |\mathcal{S}_{\mathcal{P}}| < |\mathcal{S}_{\mathcal{P}'}|$
 - $\Leftrightarrow \frac{2^n \times n!}{|\mathcal{S}_{\mathcal{P}}|} > \frac{2^n \times n!}{|\mathcal{S}_{\mathcal{P}'}|}$
 - $\Leftrightarrow \mathcal{P} \text{ has more fundamental forms than } \mathcal{P}'$

Diagram quality

- \bullet diagrams $\mathcal P$ and $\mathcal P'$ for the same $n\text{-}\mathsf{PCD}$ fragment
 - ${\mathcal P}$ is less symmetric than ${\mathcal P}'$, i.e. has more fundamental forms than ${\mathcal P}'$
 - ${\mathcal P}$ makes some visual distinctions that are not made by ${\mathcal P}'$
- the diagrammatic quality of \mathcal{P} and \mathcal{P}' depends on whether these additional visual distinctions correspond to any logical distinctions in the underlying fragment (Tversky: congruity in diagram design)
- if there are such logical distinctions in the fragment:
 - \mathcal{P} visualizes these logical distinctions (different fundamental forms)
 - \mathcal{P}' collapses these logical distinctions (same fundamental form)
 - ${\mathcal P}$ is better visualization than ${\mathcal P}'$
- if there are no such logical distinctions in the fragment:
 - no need for any visual distinctions either
 - different fundamental forms of \mathcal{P} : by-products of its lack of symmetry
 - \mathcal{P}' is better visualization than \mathcal{P}

Logic & Geometry in Aristotelian Diagrams - L. Demey & H. Smessaert

- Informational and Computational Equivalence
- 3 Logic versus Geometry in Aristotelian Diagrams
- Aristotelian Diagrams with 2 PCDs
 - 5 Aristotelian Diagrams with 3 PCDs
 - 6 Conclusion

Logic & Geometry in Aristotelian Diagrams – L. Demey & H. Smessaert

- in general: $\frac{n! \times 2^n}{|\mathcal{S}_{\mathcal{P}}|}$ fundamental forms
- 2-PCD fragment \Rightarrow 2! \times 2² = 8 configurations
- some visualizations that have been used in the literature:
 - square: $|S_{sq}| = 8$ $\frac{2! \times 2^2}{|S_{sq}|} = \frac{8}{8} = 1$ fundamental form
 - (proper) rectangle: $|\mathcal{S}_{\text{rect}}| = 4$

 $\frac{2!\times 2^2}{|\mathcal{S}_{\text{rect}}|} = \frac{8}{4} = 2$ fundamental forms

KU LEUV

- Aristotelian families of 2-PCD fragments:
 - classical
 - degenerate

Logic & Geometry in Aristotelian Diagrams - L. Demey & H. Smessaert

- 2 fundamental forms
- visual distinction: long vs short edges
 - (sub)contrariety on long edges, subalternation on short edges
 - (sub)contrariety on short edges, subalternation on long edges

- 1 fundamental form
- no visual distinction between long and short edges (all edges are equally long)

• is there a distinction between (sub)contrariety and subalternation?

• yes, there is

- complementary perspectives on the classical 'square' of opposition:
 - ► as a theory of negation (commentaries on *De Interpretatione*)
 - ► as a theory of logical consequence (commentaries on *Prior Analytics*)
- focus on different Aristotelian relations:
 - theory of negation \Rightarrow focus on (sub)contrariety
 - $\blacktriangleright \ \ theory \ of \ \ consequence \ \Rightarrow \ focus \ on \ \ subalternation$
- rectangle does justice to these differences (square would collapse them)

• no, there isn't

- logical unity of all the Aristotelian relations
 - every (sub)contrariety yields two corresponding subalternations
 - \blacktriangleright every subalternation yields corresponding contrariety and subcontrariety
- square does justice to this unity (rectangle would introduce artificial differences)

Logic & Geometry in Aristotelian Diagrams - L. Demey & H. Smessaert

- Informational and Computational Equivalence
- 3 Logic versus Geometry in Aristotelian Diagrams
 - 4 Aristotelian Diagrams with 2 PCDs
- 5 Aristotelian Diagrams with 3 PCDs
 - 6 Conclusion

Logic & Geometry in Aristotelian Diagrams – L. Demey & H. Smessaert

- in general: $\frac{n! \times 2^n}{|\mathcal{S}_{\mathcal{P}}|}$ fundamental forms
- 3-PCD fragment \Rightarrow 3! \times 2³ = 48 configurations
- some visualizations that have been used in the literature:
 - hexagon: $|\mathcal{S}_{hex}| = 12$
 - octahedron: $|\mathcal{S}_{\text{octa}}| = 48$

$$\frac{3! \times 2^3}{|S_{hex}|} = \frac{48}{12} = 4 \text{ fundamental forms}$$
$$\frac{3! \times 2^3}{|S_{ota}|} = \frac{48}{48} = 1 \text{ fundamental form}$$

KU LEUV

- Aristotelian families of 3-PCD fragments:
 - Jacoby-Sesmat-Blanché (JSB)
 - Sherwood-Czeżowski (SC)
 - unconnected-4 (U4)
 - unconnected-8 (U8)
 - unconnected-12 (U12)

Logic & Geometry in Aristotelian Diagrams – L. Demey & H. Smessaert

- 4 fundamental forms
- visual distinction:
 - all three contrariety edges equally long
 - one contrariety edge longer than the other two

- 1 fundamental form
- no visual distinction between long and short contrariety edges (all contrariety edges are equally long)

- are there different kinds of contrariety?
- \bullet usually, the contrary formulas are modeled as elements of \mathbb{B}_3
 - bitstrings 100, 010 and 001
 - all contrarieties are equally 'strong'
- for linguistic/cognitive reasons, it is sometimes useful to model the contrary formulas as elements of, say, \mathbb{B}_5
 - bitstrings 10000, 01110, 00001
 - the contrariety 10000-00001 is 'stronger' than the two other contrarieties
- in the hexagon: edge length ++++ contrariety strength
- in the octahedron: no distinction possible (collapse)
 - \Rightarrow hexagon is the preferred visualization

- 4 fundamental forms
- visual distinction:
 - additional PCD parallel to the subalternations
 - additional PCD parallel to the (sub)contrariety

 $\Box \neg p$

 $\Diamond \neg p$

q

- 1 fundamental form
- no such visual distinction regarding the additional PCD (3D polyhedron ⇒ additional PCD pierces through the classical square)

- there does not seem to be any good logical reason for visualizing the additional PCD as parallel to the (sub)contrariety vs parallel to the subalternations
- in the hexagon visualization, we are forced to make a choice
 - logically unmotivated
 - mere by-product of the lack of symmetry of the hexagon
- in the octahedron visualization, we do not have to make a choice
 - \Rightarrow octahedron is the preferred visualization

- Informational and Computational Equivalence
- 3 Logic versus Geometry in Aristotelian Diagrams
 - 4 Aristotelian Diagrams with 2 PCDs
- 5 Aristotelian Diagrams with 3 PCDs
- 6 Conclusion

Logic & Geometry in Aristotelian Diagrams – L. Demey & H. Smessaert

Conclusion

- systematic approach to informationally equivalent Aristotelian diagrams: logic (PCD structure) vs geometry (symmetry group)
- applied to some Aristotelian families of 2-PCD and 3-PCD fragments
- in general: to visualize an n-PCD fragment, consider a polytope
 - that is centrally symmetric
 - that has 2n vertices
 - that has a symmetry group of order $2^n \times n!$
 - $\Rightarrow cross-polytope of dimension n$ (dual of the*n*-dimensional hypercube)
- diagrammatically ineffective (>3D beyond human visual cognition)
- but theoretically important: first few cases:
 - n = 2: 2D cross-polytope: dual of the square: square
 - n = 3: 3D cross-polytope: dual of the cube: **octahedron**

Logic & Geometry in Aristotelian Diagrams - L. Demey & H. Smessaert

KU LEUVEN

Thank you!

More info: www.logicalgeometry.org

Logic & Geometry in Aristotelian Diagrams - L. Demey & H. Smessaert