

Ordering relations, partitions and Aristotelian diagrams

Lorenz Demey & Hans Smessaert

LNAT 4, Brussels

- The categorical statements from syllogistics
- Operational logic
- Total ordering relations
- Partial ordering relations
- Total ordering relations, once again
- Conclusion

- The categorical statements from syllogistics
- Operational logic
- Total ordering relations
- Partial ordering relations
- Total ordering relations, once again
- Onclusion

- scalarity in mathematics: ordering relations
- partial ordering \leq on a set D:
 - reflexivity: $\forall x \in D : x \leq x$
 - transitivity: $\forall x, y, z \in D : x \leq y, y \leq z \Rightarrow x \leq z$
 - antisymmetry: $\forall x, y \in D : x \leq y, y \leq x \Rightarrow x = y$
- total ordering \leq on a set D:
 - all the properties of partial orderings
 - totality: $\forall x, y \in D : x \leq y \text{ or } y \leq x$
- today: the role of ordering relations in logical geometry

4

• systematic study of the well-known **Aristotelian relations**: two statements are said to be

contradictory	iff	they cannot be true together and they cannot be false together
contrary	iff	they cannot be true together but they can be false together
subcontrary	iff	they can be true together but they cannot be false together
in subalternation	iff	the first proposition entails the second but the second doesn't entail the first

• an Aristotelian diagram is a visual representation of

- a fragment ${\cal F}$ of formulas (/natural language expressions/...)
- the Aristotelian relations holding between those formulas

KU LEUV

- $\bullet\,$ consider a fragment of formulas ${\cal F}\,$
- the partition of logical space that is induced by \mathcal{F} is $\Pi(\mathcal{F}) := \{ \alpha \in \mathcal{L} \mid \alpha \equiv \pm \varphi_1 \wedge \cdots \wedge \pm \varphi_m, \text{ and } \alpha \text{ is consistent} \}$
- \bullet the elements of $\Pi(\mathcal{F})$ are called anchor formulas
- ordering relations/scalarity phenomena can play a role in the fragment \mathcal{F} as well as in the partition $\Pi(\mathcal{F})$
- diagrammatic representation:

- **②** The categorical statements from syllogistics
- Operational logic
- Total ordering relations
- Partial ordering relations
- Total ordering relations, once again
- Onclusion

Demey & Smessaert – LNAT 4

• consider the fragment of the four categorical statements:

 $\mathcal{F}_c := \{ all humans are rational, some humans are rational, no humans are rational, some humans are not rational <math>\}$

• note: \mathcal{F}_c does **not** seem to exhibit any **ordering** relation

KU LEUVEN

The categorical statements from syllogistics

- fragment \mathcal{F}_c of the four categorical statements
- Aristotelian diagram for \mathcal{F}_c : classical square of opposition (under the assumption of existential import)

- fragment \mathcal{F}_c of the four categorical statements
- the partition induced by \mathcal{F}_c :

 $\Pi(\mathcal{F}_c) = \{ all humans are rational, some but not all humans are rational, no humans are rational \}$

- (the size of) the partition $\Pi(\mathcal{F}_c)$ allows us to measure the Boolean complexity of the fragment \mathcal{F}_c
 - $|\Pi(\mathcal{F}_c)| = 3$
 - the Boolean closure of \mathcal{F}_c contains $2^3 = 8$ formulas
 - up to logical equivalence, there are 8 Boolean combinations of $\mathcal{F}_c\text{-}\mathrm{formulas}$

• the partition induced by \mathcal{F}_c :

 $\Pi(\mathcal{F}_c) = \{ \begin{array}{ll} \textit{all humans are rational,} \\ \textit{some but not all humans are rational,} \\ \textit{no humans are rational} \end{array} \}$

• diagrammatic representations of $\Pi(\mathcal{F}_c)$:

• note: $\Pi(\mathcal{F}_c)$ constitutes a **total ordering** of logical space

}

KU LEU

- The categorical statements from syllogistics
- Operational logic
- Total ordering relations
- Partial ordering relations
- Total ordering relations, once again
- Onclusion

• consider the fragment \mathcal{F}_1 , which contains four formulas from **propositional logic**:

$$egin{array}{rcl} \mathcal{F}_1 &:= & \{ & p \wedge q, \ & p ee q, \ & \neg p \wedge \neg q, \ & \neg p ee \neg q \end{array} \end{array}$$

 \bullet note: \mathcal{F}_1 does not exhibit any ordering relation

13

Propositional logic

- \bullet fragment \mathcal{F}_1 of four formulas from propositional logic
- Aristotelian diagram for \mathcal{F}_1 : classical square of opposition

KU LEUVEN

• consider the fragment \mathcal{F}_2 , which again contains four formulas from **propositional logic**:

$$\begin{array}{rcl} \mathcal{F}_2 & := & \{ & p, & \\ & & q, & \\ & & \neg p, & \\ & & \neg q \end{array}$$

}

 \bullet note: \mathcal{F}_2 does not exhibit any ordering relation

KU LEUVE

Propositional logic

- \bullet fragment \mathcal{F}_2 of four formulas from propositional logic
- Aristotelian diagram for \mathcal{F}_2 : degenerate square of opposition
 - \bullet contradictions between $p/\neg p$ and $q/\neg q$
 - all other pairs of formulas are unconnected: they do not stand in any Aristotelian relation at all

• the partition induced by \mathcal{F}_2 :

$$\Pi(\mathcal{F}_2) = \{ p \land q, \\ p \land \neg q, \\ \neg p \land q, \\ \neg p \land q, \\ \neg p \land \neg q \}$$

- (the size of) the partition $\Pi(\mathcal{F}_2)$ allows us to measure the Boolean complexity of the fragment \mathcal{F}_2
 - $|\Pi(\mathcal{F}_2)| = 4$
 - the Boolean closure of \mathcal{F}_2 contains $2^4 = 16$ formulas
 - up to logical equivalence, there are 16 Boolean combinations of $\mathcal{F}_2\text{-}\mathrm{formulas}$

KU LEUVEN

• diagrammatic representations of $\Pi(\mathcal{F}_2)$:

• note: $\Pi(\mathcal{F}_2)$ does **not** involve any underlying **ordering** of logical space

- $\Pi(\mathcal{F}_2)$ displays a high degree of symmetry
- $\Pi(\mathcal{F}_2)$ is the result of crosscutting the two bipartitions $p/\neg p$ and $q/\neg q$

Propositional logic

- \bullet one might argue that $\Pi(\mathcal{F}_2)$ is an ordering of logical space after all:
 - not a total ordering, but a partial ordering
 - anchor formulas are ordered by 'number of true (non-negated) conjuncts'

 however, in most concrete cases, this does not seem very plausible e.g. the crosscutt of the bipartitions male/female and adult/child

- The categorical statements from syllogistics
- Operational logic
- Total ordering relations
- Partial ordering relations
- Total ordering relations, once again
- Onclusion

• consider the fragment \mathcal{F}_t of six statements involving a total ordering relation \leq on a set D and two elements $x, y \in D$:

$$egin{array}{rcl} \mathcal{F}_t &:= & \{ & x > y, \ & x = y, \ & x < y, \ & x \leq y, \ & x \leq y, \ & x \neq y, \ & x \neq y, \ & x \geq y \end{array}$$

• Aristotelian diagram for \mathcal{F}_t : a hexagon of opposition

• originally due to Robert Blanché (Sur l'opposition des concepts, 1953)

Demey & Smessaert – LNAT 4

KU LEUVEN

• the partition induced by \mathcal{F}_t :

$$\Pi(\mathcal{F}_t) = \{ x > y, \\ x = y, \\ x < y \}$$

- (the size of) the partition Π(F_t) allows us to measure the Boolean complexity of the fragment F_t
 - $|\Pi(\mathcal{F}_t)| = 3$
 - the Boolean closure of \mathcal{F}_t contains $2^3 = 8$ formulas
 - up to logical equivalence, there are 8 Boolean combinations of $\mathcal{F}_t\text{-}\mathrm{formulas}$
 - apart from ⊥ and ⊤, all of these Boolean combinations can already be found in the hexagon itself
 - the hexagon is closed under the Boolean operations

Total ordering relations

• the partition induced by \mathcal{F}_t :

$$\Pi(\mathcal{F}_t) = \{ \begin{array}{c} x > y, \\ x = y, \\ x < y \end{array} \}$$

• diagrammatic representations of $\Pi(\mathcal{F}_t)$:

$$x > y \qquad \qquad x = y \qquad \qquad x < y$$

$$x > y \qquad x = y \qquad x < y$$

• note: $\Pi(\mathcal{F}_t)$ constitutes itself a **total ordering** of logical space

KU LEUVEN

- The categorical statements from syllogistics
- Operational logic
- Total ordering relations
- **9** Partial ordering relations
- Total ordering relations, once again
- Onclusion

 let *F_p* be exactly the same fragment as before (*F_t*), but now under the assumption that ≤ is a **partial ordering** on *D* instead of a total ordering

$$egin{array}{rcl} \mathcal{F}_p &:= & \{ & x > y, \ & x = y, \ & x < y, \ & x \leq y, \ & x \leq y, \ & x \neq y, \ & x \geq y \end{array}$$

• we drop the assumption of totality $(\forall x, y \in D : x \leq y \text{ or } y \leq x)$

it becomes possible for x and y to be incomparable: x # y
(i.e. neither x ≥ y nor x ≤ y)

KU LEU

- the Aristotelian diagram for \mathcal{F}_p : a very different **hexagon of opposition**
 - two of the three contradictions change into contrarieties (> / \leq and < / \geq)
 - $\bullet\,$ one of the three subcontrarieties is lost ($\geq/\leq)$
 - the three contrarieties and six subalternations remain unchanged

• the partition induced by \mathcal{F}_p :

$$\Pi(\mathcal{F}_p) = \{ x > y, \\ x = y, \\ x < y, \\ x \# y$$

- (the size of) the partition $\Pi(\mathcal{F}_p)$ allows us to measure the Boolean complexity of the fragment \mathcal{F}_p
 - $|\Pi(\mathcal{F}_t)| = 4$
 - $\bullet\,$ the Boolean closure of \mathcal{F}_p contains $2^4=16$ formulas
 - up to logical equivalence, there are 16 Boolean combinations of $\mathcal{F}_p\text{-}\mathrm{formulas}$

KU LEUV

• diagrammatic representations of $\Pi(\mathcal{F}_p)$:

x > y	x = y	<i>x</i> < <i>y</i>			
x # y					

\bullet note: $\Pi(\mathcal{F}_p)$ constitutes itself a **partial ordering** of logical space

Demey & Smessaert – LNAT 4

KU LEUVEN

• by setting # to be \emptyset

(i.e. imposing the requirement that x # y is impossible):

- from partial ordering to total ordering
- from the 4-partition $\Pi(\mathcal{F}_p)$ to 3-partition $\Pi(\mathcal{F}_t)$
- from Boolean closure of size $2^4 = 16$ to Boolean closure of size $2^3 = 8$

partial ordering		total ordering	total ordering		partial ordering
>	\rightarrow	>	$= \cup <$	\leftarrow	$= \cup < \cup \#$
$> \cup \#$	\nearrow			K	$= \cup <$
=	\rightarrow	=	$> \cup <$	\leftarrow	$> \cup < \cup \#$
$= \cup \#$	\nearrow			K	$> \cup <$
<	\rightarrow	<	$> \cup =$	\leftarrow	$> \cup = \cup \#$
$< \cup \#$	\nearrow			K	$> \cup =$
#	\rightarrow	Ø	$> \cup = \cup <$		$> \cup = \cup <$
Ø	X			K	$> \cup = \cup < \cup \#$

KU LEUVEN

- The categorical statements from syllogistics
- Operational logic
- Total ordering relations
- Partial ordering relations
- **6** Total ordering relations, once again
- Onclusion

31

- so far:
 - focus on total ordering versus partial ordering
 - focus on the axiom of totality
- now:
 - focus on the axiom of transitivity
 - $\bullet \ \forall x,y,z \in D: x \leq y,y \leq z \Rightarrow x \leq z$
- consider the fragment *F**, which, for three elements *x*, *y*, *z* ∈ *D*, contains all formulas of the form *x* ∘ *y*, *y* ∘ *z* and *x* ∘ *z*, with ∘ ∈ {>,=,<,≤,≠,≥}
- note: $|\mathcal{F}^*| = 3 \times 6 = 18$
- what is the partition $\Pi(\mathcal{F}^*)$ that is induced by \mathcal{F}^* ?

KU LEU

• we can write $\mathcal{F}^* = \mathcal{F}_{xy} \cup \mathcal{F}_{yz} \cup \mathcal{F}_{xz}$ • $\mathcal{F}_{xy} = \{x > y, x = y, x < y, x \le y, x \ne y, x \ge y\}$ (Blanché hexagon) • $\mathcal{F}_{yz} = \{y > z, y = z, y < z, y \le z, y \ne z, y \ge z\}$ (Blanché hexagon) • $\mathcal{F}_{xz} = \{x > z, x = z, x < z, x \le z, x \ne z, x \ge z\}$ (Blanché hexagon)

• we know the partitions that are induced by these subfragments of \mathcal{F}^* :

•
$$\Pi(\mathcal{F}_{xy}) = \{x > y, x = y, x < y\}$$

•
$$\Pi(\mathcal{F}_{yz}) = \{y > z, y = z, y < z\}$$

•
$$\Pi(\mathcal{F}_{xz}) = \{x > z, x = z, x < z\}$$

• $\Pi(\mathcal{F}^*)$ is the result of crosscutting $\Pi(\mathcal{F}_{xy})$, $\Pi(\mathcal{F}_{yz})$ and $\Pi(\mathcal{F}_{xz})$

• in principle $3 \times 3 \times 3 = 27$ conjunctions of anchor formulas

- because of **transitivity**, many of these conjunctions are inconsistent (e.g. x > y, y > z, and x < z are inconsistent with each other)
- $\bullet\,$ exactly 13 conjunctions are consistent, and thus get included in $\Pi(\mathcal{F}^*)$

KU LEL

• the partition $\Pi(\mathcal{F}^*)$ contains the following 13 formulas:

1.	x > y	\wedge	y > z	\wedge	x > z	$x \mid y \mid z$
2.	x = y	\wedge	y > z	\wedge	x > z	$xy \mid z$
3.	x < y	\wedge	y > z	\wedge	x > z	$y \mid x \mid z$
4.	x > y	\wedge	y = z	\wedge	x > z	$x \mid yz$
5.	x > y	\wedge	y < z	\wedge	x > z	$x \mid z \mid y$
6.	x < y	\wedge	y > z	\wedge	x = z	$y \mid xz$
7.	x = y	\wedge	y = z	\wedge	x = z	xyz
8.	x > y	\wedge	y < z	\wedge	x = z	$xz \mid y$
9.	x < y	\wedge	y > z	\wedge	x < z	$y \mid z \mid x$
10.	x < y	\wedge	y = z	\wedge	x < z	$yz \mid x$
11.	x > y	\wedge	y < z	\wedge	x < z	$z \mid x \mid y$
12.	x = y	\wedge	y < z	\wedge	x < z	$z \mid xy$
13.	x < y	\wedge	y < z	\wedge	x < z	$z \mid y \mid x$

Demey & Smessaert – LNAT 4

KU LEUVEN

- (the size of) the partition $\Pi(\mathcal{F}^*)$ allows us to measure the Boolean complexity of the fragment \mathcal{F}^*
 - recall that $|\mathcal{F}^*|=18$
 - $\bullet\,$ we have just seen that $|\Pi(\mathcal{F}^*)|=13$
 - the Boolean closure of \mathcal{F}^* contains $2^{13} = 8.192$ formulas
 - up to logical equivalence, there are 8.192 Boolean combinations of $\mathcal{F}^*\text{-}\mathrm{formulas}$
- the partition $\Pi(\mathcal{F}^*)$ is not an ordering on logical space, but rather has a high degree of symmetry
 - 6 conjunctions with 0 identity-conjuncts
 - $\bullet~6$ conjunctions with 1 identity-conjunct
 - 1 conjunction with 3 identity-conjuncts

KU LEL

• a diagrammatic representation of $\Pi(\mathcal{F}^*)$

 another diagrammatic representation of Π(F*) (geometric combinatorics: permutahedron)

Demey & Smessaert – LNAT 4

KU LEUVEN

- The categorical statements from syllogistics
- Operational logic
- Total ordering relations
- Partial ordering relations
- Total ordering relations, once again
- Occurrence Conclusion

 $\begin{array}{ccc} \text{logical realm} & \text{fragment } \mathcal{F} & \xrightarrow{\text{induces}} & \text{partition } \Pi(\mathcal{F}) \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \text{visual realm} & \text{Aristotelian diagram} & \text{partition diagram} \end{array}$

ordering relations/scalarity phenomena can play a role in the fragment ${\cal F}$ as well as in the partition $\Pi({\cal F})$

fragment/	partition/	concrete example
Aristotelian diagram	partition diagram	
not order-based	order-based	cf. section 2: \mathcal{F}_c
not order-based	not order-based	cf. section 3: \mathcal{F}_2
order-based	order-based	cf. sections 4,5: \mathcal{F}_t , \mathcal{F}_p
order-based	not order-based	cf. section 6: \mathcal{F}^*

KU LEUVEN

Thank you!

Questions?

More info: www.logicalgeometry.org

KU LEUVEN