KU LEUVEN

Ordering relations, partitions and Aristotelian diagrams

Lorenz Demey \& Hans Smessaert

LNAT 4, Brussels

Structure of the talk

(1) Introduction
(2) The categorical statements from syllogistics
(3) Propositional logic
(9) Total ordering relations
(6) Partial ordering relations
(0) Total ordering relations, once again
(1) Conclusion

Structure of the talk

(1) Introduction

(2) The categorical statements from syllogistics
(3) Propositional logic
(9) Total ordering relations
(6) Partial ordering relations
(0) Total ordering relations, once again
(1) Conclusion

- scalarity in mathematics: ordering relations
- partial ordering \leq on a set D :
- reflexivity: $\forall x \in D: x \leq x$
- transitivity: $\forall x, y, z \in D: x \leq y, y \leq z \Rightarrow x \leq z$
- antisymmetry: $\forall x, y \in D: x \leq y, y \leq x \Rightarrow x=y$
- total ordering \leq on a set D :
- all the properties of partial orderings
- totality: $\forall x, y \in D: x \leq y$ or $y \leq x$
- today: the role of ordering relations in logical geometry
- systematic study of the well-known Aristotelian relations: two statements are said to be

contradictory	iff	they cannot be true together and they cannot be false together
contrary iff	they cannot be true together but they can be false together	
subcontrary iff	they can be true together but they cannot be false together	
in subalternation iff	the first proposition entails the second but the second doesn't entail the first	

- an Aristotelian diagram is a visual representation of
- a fragment \mathcal{F} of formulas (/natural language expressions/...)
- the Aristotelian relations holding between those formulas

Fragments and partitions

- consider a fragment of formulas \mathcal{F}
- the partition of logical space that is induced by \mathcal{F} is $\Pi(\mathcal{F}):=\left\{\alpha \in \mathcal{L} \mid \alpha \equiv \pm \varphi_{1} \wedge \cdots \wedge \pm \varphi_{m}\right.$, and α is consistent $\}$
- the elements of $\Pi(\mathcal{F})$ are called anchor formulas
- ordering relations/scalarity phenomena can play a role in the fragment \mathcal{F} as well as in the partition $\Pi(\mathcal{F})$
- diagrammatic representation:

logical realm	fragment \mathcal{F}	$\xrightarrow{\text { induces }}$
\downarrow	\downarrow	partition $\Pi(\mathcal{F})$
visual realm	Aristotelian diagram	
\downarrow		

Structure of the talk

(1) Introduction
(2) The categorical statements from syllogistics
(3) Propositional logic
(9) Total ordering relations
(6) Partial ordering relations
(0) Total ordering relations, once again
(1) Conclusion

- consider the fragment of the four categorical statements:

$$
\begin{aligned}
\mathcal{F}_{c}:=\left\{\begin{array}{l}
\text { all humans are rational, } \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\text { some humans hume are rational, },
\end{array}\right. \\
\text { somans are not rational }\}
\end{aligned}
$$

- note: \mathcal{F}_{c} does not seem to exhibit any ordering relation
- fragment \mathcal{F}_{c} of the four categorical statements
- Aristotelian diagram for \mathcal{F}_{c} : classical square of opposition (under the assumption of existential import)

- fragment \mathcal{F}_{c} of the four categorical statements
- the partition induced by \mathcal{F}_{c} :

$$
\begin{aligned}
\Pi\left(\mathcal{F}_{c}\right)=\left\{\begin{array}{l}
\text { all humans are rational, } \\
\\
\\
\\
\text { some but not all humans are rational, }
\end{array}\right. \\
\text { no humans are rational }
\end{aligned}
$$

- (the size of) the partition $\Pi\left(\mathcal{F}_{c}\right)$ allows us to measure the Boolean complexity of the fragment \mathcal{F}_{c}
- $\left|\Pi\left(\mathcal{F}_{c}\right)\right|=3$
- the Boolean closure of \mathcal{F}_{c} contains $2^{3}=8$ formulas
- up to logical equivalence, there are 8 Boolean combinations of \mathcal{F}_{c}-formulas
- the partition induced by \mathcal{F}_{c} :

$$
\begin{aligned}
\Pi\left(\mathcal{F}_{c}\right)=\left\{\begin{array}{l}
\text { all humans are rational, } \\
\\
\\
\\
\\
\text { some but not all humans are rational, }
\end{array}\right. \\
\text { no hums are rational }
\end{aligned}
$$

- diagrammatic representations of $\Pi\left(\mathcal{F}_{c}\right)$:

all	some but not all	no

- note: $\Pi\left(\mathcal{F}_{c}\right)$ constitutes a total ordering of logical space
(1) Introduction
(2) The categorical statements from syllogistics
(3) Propositional logic
(9) Total ordering relations
(6) Partial ordering relations
(0) Total ordering relations, once again
(1) Conclusion

Propositional logic

- consider the fragment \mathcal{F}_{1}, which contains four formulas from propositional logic:

$$
\begin{aligned}
\mathcal{F}_{1}:=\{ & p \wedge q, \\
& p \vee q, \\
& \neg p \wedge \neg q, \\
& \neg p \vee \neg q,\}
\end{aligned}
$$

- note: \mathcal{F}_{1} does not exhibit any ordering relation

Propositional logic

- fragment \mathcal{F}_{1} of four formulas from propositional logic
- Aristotelian diagram for \mathcal{F}_{1} : classical square of opposition

Propositional logic

- consider the fragment \mathcal{F}_{2}, which again contains four formulas from propositional logic:

$$
\left.\begin{array}{rl}
\mathcal{F}_{2}:=\left\{\begin{array}{l}
p, \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array},\right. \\
\hline p,
\end{array}\right\}
$$

- note: \mathcal{F}_{2} does not exhibit any ordering relation

Propositional logic

- fragment \mathcal{F}_{2} of four formulas from propositional logic
- Aristotelian diagram for \mathcal{F}_{2} : degenerate square of opposition
- contradictions between $p / \neg p$ and $q / \neg q$
- all other pairs of formulas are unconnected: they do not stand in any Aristotelian relation at all

Propositional logic

- the partition induced by \mathcal{F}_{2} :

$$
\left.\begin{array}{rl}
\Pi\left(\mathcal{F}_{2}\right)=\{ & p \wedge q \\
& p \wedge \neg q \\
& \neg p \wedge q \\
& \neg p \wedge \neg q
\end{array}\right\}
$$

- (the size of) the partition $\Pi\left(\mathcal{F}_{2}\right)$ allows us to measure the Boolean complexity of the fragment \mathcal{F}_{2}
- $\left|\Pi\left(\mathcal{F}_{2}\right)\right|=4$
- the Boolean closure of \mathcal{F}_{2} contains $2^{4}=16$ formulas
- up to logical equivalence, there are 16 Boolean combinations of \mathcal{F}_{2}-formulas

Propositional logic

- diagrammatic representations of $\Pi\left(\mathcal{F}_{2}\right)$:

- note: $\Pi\left(\mathcal{F}_{2}\right)$ does not involve any underlying ordering of logical space
- $\Pi\left(\mathcal{F}_{2}\right)$ displays a high degree of symmetry
- $\Pi\left(\mathcal{F}_{2}\right)$ is the result of crosscutting the two bipartitions $p / \neg p$ and $q / \neg q$

Propositional logic

- one might argue that $\Pi\left(\mathcal{F}_{2}\right)$ is an ordering of logical space after all:
- not a total ordering, but a partial ordering
- anchor formulas are ordered by 'number of true (non-negated) conjuncts'

$p \wedge q$
$\neg p \wedge \neg q$
$\neg p \wedge q$
- however, in most concrete cases, this does not seem very plausible e.g. the crosscutt of the bipartitions male/female and adult/child
(1) Introduction
(2) The categorical statements from syllogistics
(3) Propositional logic
(9) Total ordering relations
(6) Partial ordering relations
(0) Total ordering relations, once again
(1) Conclusion
- consider the fragment \mathcal{F}_{t} of six statements involving a total ordering relation \leq on a set D and two elements $x, y \in D$:

$$
\begin{array}{r}
\mathcal{F}_{t}:=\quad\left\{\begin{array}{l}
x>y \\
\\
x=y \\
\\
x<y \\
\\
x \leq y \\
\\
x \neq y \\
\\
x \geq y
\end{array}\right\}
\end{array}
$$

- Aristotelian diagram for \mathcal{F}_{t} : a hexagon of opposition

- originally due to Robert Blanché (Sur l'opposition des concepts, 1953)
- the partition induced by \mathcal{F}_{t} :

$$
\Pi\left(\mathcal{F}_{t}\right)=\left\{\begin{array}{l}
x>y \\
x=y \\
x<y
\end{array}\right\}
$$

- (the size of) the partition $\Pi\left(\mathcal{F}_{t}\right)$ allows us to measure the Boolean complexity of the fragment \mathcal{F}_{t}
- $\left|\Pi\left(\mathcal{F}_{t}\right)\right|=3$
- the Boolean closure of \mathcal{F}_{t} contains $2^{3}=8$ formulas
- up to logical equivalence, there are 8 Boolean combinations of \mathcal{F}_{t}-formulas
- apart from \perp and T, all of these Boolean combinations can already be found in the hexagon itself
- the hexagon is closed under the Boolean operations

Total ordering relations

- the partition induced by \mathcal{F}_{t} :

$$
\Pi\left(\mathcal{F}_{t}\right)=\left\{\begin{array}{l}
x>y \\
x=y \\
x<y
\end{array}\right\}
$$

- diagrammatic representations of $\Pi\left(\mathcal{F}_{t}\right)$:

$x>y$	$x=y$	$x<y$

$x>y$	$x=y$	$x<y$

- note: $\Pi\left(\mathcal{F}_{t}\right)$ constitutes itself a total ordering of logical space
(1) Introduction
(2) The categorical statements from syllogistics
(3) Propositional logic
(9) Total ordering relations
(6) Partial ordering relations
(0) Total ordering relations, once again
(1) Conclusion
- let \mathcal{F}_{p} be exactly the same fragment as before $\left(\mathcal{F}_{t}\right)$, but now under the assumption that \leq is a partial ordering on D instead of a total ordering

$$
\begin{array}{r}
\mathcal{F}_{p}:=\left\{\begin{array}{l}
x>y \\
\\
x=y \\
\\
x<y \\
\\
x \leq y \\
\\
x \neq y \\
\\
x \geq y
\end{array}\right\}
\end{array}
$$

- we drop the assumption of totality $(\forall x, y \in D: x \leq y$ or $y \leq x)$
- it becomes possible for x and y to be incomparable: $x \# y$ (i.e. neither $x \geq y$ nor $x \leq y$)

Partial ordering relations

- the Aristotelian diagram for \mathcal{F}_{p} :
a very different hexagon of opposition
- two of the three contradictions change into contrarieties ($>/ \leq$ and $</ \geq$)
- one of the three subcontrarieties is lost (\geq / \leq)
- the three contrarieties and six subalternations remain unchanged

- the partition induced by \mathcal{F}_{p} :

$$
\begin{array}{r}
\Pi\left(\mathcal{F}_{p}\right)=\left\{\begin{array}{l}
x>y \\
x=y \\
x<y \\
x \neq y
\end{array}\right\}
\end{array}
$$

- (the size of) the partition $\Pi\left(\mathcal{F}_{p}\right)$ allows us to measure the Boolean complexity of the fragment \mathcal{F}_{p}
- $\left|\Pi\left(\mathcal{F}_{t}\right)\right|=4$
- the Boolean closure of \mathcal{F}_{p} contains $2^{4}=16$ formulas
- up to logical equivalence, there are 16 Boolean combinations of \mathcal{F}_{p}-formulas
- diagrammatic representations of $\Pi\left(\mathcal{F}_{p}\right)$:

$x>y$	$x=y$	$x<y$
$x \neq y$		

- note: $\Pi\left(\mathcal{F}_{p}\right)$ constitutes itself a partial ordering of logical space
- by setting \# to be \emptyset
(i.e. imposing the requirement that $x \# y$ is impossible):
- from partial ordering to total ordering
- from the 4-partition $\Pi\left(\mathcal{F}_{p}\right)$ to 3-partition $\Pi\left(\mathcal{F}_{t}\right)$
- from Boolean closure of size $2^{4}=16$ to Boolean closure of size $2^{3}=8$

partial ordering		total ordering	total ordering		partial ordering
$\begin{aligned} & > \\ & >\cup \# \end{aligned}$	$\begin{aligned} & \vec{r} \\ & \hline \end{aligned}$	>	$=\cup<$	\leftarrow	$=\cup<\cup \#$
$=$	\rightarrow	=	$>\cup<$	\leftarrow	$>\cup<\cup \#$
$=\cup \#$	\rightarrow			<	$>\cup<$
<	\rightarrow	$<$	$>\cup=$	\leftarrow	$>\cup=\cup \#$
$<\cup \#$	\rightarrow			<	$>\cup=$
\#	\rightarrow	\emptyset	$>\cup=U<$	\leftarrow	$>U=U<$
\emptyset	\rightarrow			<	$>\cup=\cup<\cup \#$

(1) Introduction
(2) The categorical statements from syllogistics
(3) Propositional logic
(9) Total ordering relations
(6) Partial ordering relations
(0) Total ordering relations, once again
(1) Conclusion

- so far:
- focus on total ordering versus partial ordering
- focus on the axiom of totality
- now:
- focus on the axiom of transitivity
- $\forall x, y, z \in D: x \leq y, y \leq z \Rightarrow x \leq z$
- consider the fragment \mathcal{F}^{*}, which, for three elements $x, y, z \in D$, contains all formulas of the form $x \circ y, y \circ z$ and $x \circ z$, with $\circ \in\{>,=,<, \leq, \neq, \geq\}$
- note: $\left|\mathcal{F}^{*}\right|=3 \times 6=18$
- what is the partition $\Pi\left(\mathcal{F}^{*}\right)$ that is induced by \mathcal{F}^{*} ?
- we can write $\mathcal{F}^{*}=\mathcal{F}_{x y} \cup \mathcal{F}_{y z} \cup \mathcal{F}_{x z}$
- $\mathcal{F}_{x y}=\{x>y, x=y, x<y, x \leq y, x \neq y, x \geq y\}$
- $\mathcal{F}_{y z}=\{y>z, y=z, y<z, y \leq z, y \neq z, y \geq z\}$
- $\mathcal{F}_{x z}=\{x>z, x=z, x<z, x \leq z, x \neq z, x \geq z\}$
(Blanché hexagon)
(Blanché hexagon)
(Blanché hexagon)
- we know the partitions that are induced by these subfragments of \mathcal{F}^{*} :
- $\Pi\left(\mathcal{F}_{x y}\right)=\{x>y, x=y, x<y\}$
- $\Pi\left(\mathcal{F}_{y z}\right)=\{y>z, y=z, y<z\}$
- $\Pi\left(\mathcal{F}_{x z}\right)=\{x>z, x=z, x<z\}$
- $\Pi\left(\mathcal{F}^{*}\right)$ is the result of crosscutting $\Pi\left(\mathcal{F}_{x y}\right), \Pi\left(\mathcal{F}_{y z}\right)$ and $\Pi\left(\mathcal{F}_{x z}\right)$
- in principle $3 \times 3 \times 3=27$ conjunctions of anchor formulas
- because of transitivity, many of these conjunctions are inconsistent (e.g. $x>y, y>z$, and $x<z$ are inconsistent with each other)
- exactly 13 conjunctions are consistent, and thus get included in $\Pi\left(\mathcal{F}^{*}\right)$
- the partition $\Pi\left(\mathcal{F}^{*}\right)$ contains the following 13 formulas:

1. $x>y \wedge y>z \wedge x>z$
2. $x=y \wedge y>z \wedge x>z$
3. $x<y \wedge y>z \wedge x>z$
4. $x>y \wedge y=z \wedge x>z$
5. $x>y \wedge y<z \wedge x>z$
6. $x<y \wedge y>z \wedge x=z$
7. $x=y \wedge y=z \wedge x=z$
8. $x>y \wedge y<z \wedge x=z$
9. $x<y \wedge y>z \wedge x<z$
10. $x<y \wedge y=z \wedge x<z$
11. $x>y \wedge y<z \wedge x<z$
12. $x=y \wedge y<z \wedge x<z$
13. $x<y \wedge y<z \wedge x<z$

$$
\begin{gathered}
x|y| z \\
x y \mid z \\
y|x| z \\
x \mid y z \\
x|z| y \\
y \mid x z \\
x y z \\
x z \mid y \\
y|z| x \\
y z \mid x \\
z|x| y \\
z \mid x y \\
z|y| x
\end{gathered}
$$

- (the size of) the partition $\Pi\left(\mathcal{F}^{*}\right)$ allows us to measure the Boolean complexity of the fragment \mathcal{F}^{*}
- recall that $\left|\mathcal{F}^{*}\right|=18$
- we have just seen that $\left|\Pi\left(\mathcal{F}^{*}\right)\right|=13$
- the Boolean closure of \mathcal{F}^{*} contains $2^{13}=8.192$ formulas
- up to logical equivalence, there are 8.192 Boolean combinations of \mathcal{F}^{*}-formulas
- the partition $\Pi\left(\mathcal{F}^{*}\right)$ is not an ordering on logical space, but rather has a high degree of symmetry
- 6 conjunctions with 0 identity-conjuncts
- 6 conjunctions with 1 identity-conjunct
- 1 conjunction with 3 identity-conjuncts
- a diagrammatic representation of $\Pi\left(\mathcal{F}^{*}\right)$

- another diagrammatic representation of $\Pi\left(\mathcal{F}^{*}\right)$ (geometric combinatorics: permutahedron)

(1) Introduction
(2) The categorical statements from syllogistics
(3) Propositional logic
(9) Total ordering relations
(6) Partial ordering relations
(0) Total ordering relations, once again
(1) Conclusion

ordering relations/scalarity phenomena can play a role in the fragment \mathcal{F} as well as in the partition $\Pi(\mathcal{F})$

fragment/ Aristotelian diagram	partition/ partition diagram	concrete example
not order-based	order-based	cf. section 2: \mathcal{F}_{c}
not order-based	not order-based	cf. section 3: \mathcal{F}_{2}
order-based	order-based	cf. sections 4,5: $\mathcal{F}_{t}, \mathcal{F}_{p}$
order-based	not order-based	cf. section 6: \mathcal{F}^{*}

Thank you!

Questions?

More info: www.logicalgeometry.org

