

Metalogical Decorations of Logical Diagrams

Lorenz Demey & Hans Smessaert

CLMPS 2015. Helsinki

Introduction

- Aristotelian diagrams (e.g. square of oppositions):
 - long and rich history in philosophical logic
 - past decade: revived interest
 - mainly object-logical decorations: formulas from some logical system
 - some exceptions: metalogical decorations (Béziau, Seuren)
- aims of this talk:
 - extend and deepen our knowledge of metalogical decorations
 - new metalogical decorations, larger diagrams, less well-known diagrams
 - unifying perspective on existing work
- keep in mind:
 - this talk is based on a paper of 60+ pages
 - omission of many details, examples, etc.
 - interested? ask for the full paper!

Preliminaries

- 2 Aristotelian Diagrams for the Opposition Relations
- 3 Aristotelian Diagrams for the Implication Relations
- 4 Aristotelian Diagrams for the Aristotelian Relations
- 5 Aristotelian Diagrams for the Duality Relations
 - 6 Conclusion

Metalogical Decorations of Logical Diagrams - L. Demey, H. Smessaert

Preliminaries

- 2 Aristotelian Diagrams for the Opposition Relations
- 3 Aristotelian Diagrams for the Implication Relations
- 4 Aristotelian Diagrams for the Aristotelian Relations
- 5 Aristotelian Diagrams for the Duality Relations
- 6 Conclusion

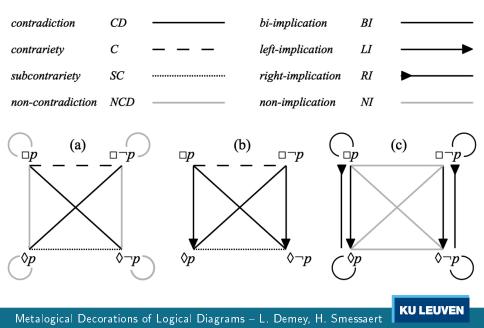
Metalogical Decorations of Logical Diagrams – L. Demey, H. Smessaert

- the Aristotelian relations (in a suitable logical system S): φ and ψ are S-contradictory iff $S \models \neg(\varphi \land \psi)$ and $S \models \neg(\neg \varphi \land \neg \psi)$ S-contrary iff $S \models \neg(\varphi \land \psi)$ and $S \not\models \neg(\neg \varphi \land \neg \psi)$ S-subcontrary iff $S \not\models \neg(\varphi \land \psi)$ and $S \not\models \neg(\neg \varphi \land \neg \psi)$ in S-subalternation iff $S \models \varphi \rightarrow \psi$ and $S \not\models \psi \rightarrow \varphi$
- this can be generalized to an arbitrary Boolean algebra \mathbb{B} : x and y are \mathbb{B} -contradictory iff $x \wedge_{\mathbb{B}} y = \bot_{\mathbb{B}}$ and $x \vee_{\mathbb{B}} y = \top_{\mathbb{B}}$ \mathbb{B} -contrary iff $x \wedge_{\mathbb{B}} y = \bot_{\mathbb{B}}$ and $x \vee_{\mathbb{B}} y \neq \top_{\mathbb{B}}$ \mathbb{B} -subcontrary iff $x \wedge_{\mathbb{B}} y \neq \bot_{\mathbb{B}}$ and $x \vee_{\mathbb{B}} y = \top_{\mathbb{B}}$ in \mathbb{B} -subalternation iff $x \wedge_{\mathbb{B}} y = x$ and $x \wedge_{\mathbb{B}} y \neq y$
- this subsumes both object- and metalogical uses:
 - object-logical: let
 B be
 B(S) (Lindenbaum-Tarski algebra of S)
 - metalogical: let \mathbb{B} be $\wp(\mathbb{B}(S))$ or $\wp(\mathbb{B}(S) \times \mathbb{B}(S))$

$ullet$ the opposition relations: $arphi$ and ψ are						
S-contradictory	iff	$S \models \neg(\varphi \land \psi)$	and	$S\models \neg(\varphi\wedge\psi)$		
S-contrary	iff	$S \models \neg(\varphi \land \psi)$	and	$S \not\models \neg (\varphi \land \psi)$		
S-subcontrary	iff	$S \not\models \neg(\varphi \land \psi)$	and	$S\models \neg(\varphi\wedge\psi)$		
S-noncontradictory	iff	$S \not\models \neg(\varphi \land \psi)$	and	$S \not\models \neg (\varphi \land \psi)$		
• the implication relatio in S-bi-implication in S-left-implication in S-right-implication in S-non-implication	iff iff	1	and and and and	V / I		

- motivation:
 - disentangling the Aristotelian relations into opposition and implication
 - the Aristotelian relations are informationally optimal between the opposition and implication relations

Opposition and Implication Relations



- $\bullet\,$ Boolean algebras $\mathbb A$ and $\mathbb B$
- the duality relations: the *n*-ary operators $O_1, O_2 : \mathbb{A}^n \to \mathbb{B}$ are identical iff $\forall a \in A^n : O_1(a) = O_2(a)$ external negations iff $\forall a \in A^n : O_1(a) = \neg_{\mathbb{B}} O_2(a)$ internal negations iff $\forall a \in A^n : O_1(a) = O_2(\neg_{\mathbb{A}^n} a)$ duals iff $\forall a \in A^n : O_1(a) = \neg_{\mathbb{B}} O_2(\neg_{\mathbb{A}^n} a)$

-with $\neg_{\mathbb{A}^n} a = \neg_{\mathbb{A}^n}(a_1, \dots, a_n) = (\neg_{\mathbb{A}} a_1, \dots, \neg_{\mathbb{A}} a_n)$

- abbreviations: ID, ENEG, INEG and DUAL
- examples: INEG(\Box , \Box ¬), DUAL(\Box , \Diamond), DUAL(\land , \lor), etc.
- note:
 - many Aristotelian squares are also duality squares
 - but the Aristotelian and duality relations are conceptually independent (except that *CD* is ENEG, of course)

Metalogical Decorations of Logical Diagrams - L. Demey, H. Smessaert

9

Preliminaries

2 Aristotelian Diagrams for the Opposition Relations

3 Aristotelian Diagrams for the Implication Relations

4 Aristotelian Diagrams for the Aristotelian Relations

5 Aristotelian Diagrams for the Duality Relations

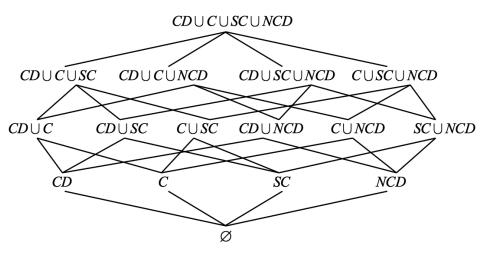
6 Conclusion

Metalogical Decorations of Logical Diagrams – L. Demey, H. Smessaert

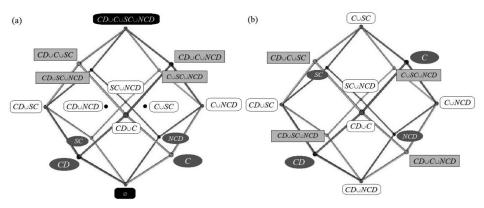
- logical system S (often left implicit)
- easy: every pair of formulas stands in exactly one opposition relation
- \bullet the opposition relations form a partition of $\mathbb{B}(\mathsf{S})\times\mathbb{B}(\mathsf{S})$
- the opposition relations can be viewed as atoms in a Boolean algebra
 - the elements of this Boolean algebra are $\bigcup \mathcal{X}$, for $\mathcal{X} \subseteq \{CD, C, SC, NCD\}$
 - it has $2^4 = 16$ elements
 - its bottom and top elements are \emptyset and $CD \cup C \cup SC \cup NCD = \mathbb{B}(S) \times \mathbb{B}(S)$
- visualizations of this Boolean algebra:
 - Hasse diagram: 2D or 3D rhombic dodecahedron (RDH)
 - Aristotelian diagram: rhombic dodecahedron

(close connection between Hasse RDH and Aristotelian RDH)

Metalogical Decorations of Logical Diagrams - L. Demey, H. Smessaert



11



KU LEUVEN

Metalogical Decorations of Logical Diagrams - L. Demey, H. Smessaert

Aristotelian RDH for the Opposition Relations

- Aristotelian RDH for the opposition relations
 ⇒ largest metalogical diagram so far!
- Aristotelian RDH has many object-logical decorations
 - e.g. propositional connectives, modal logic S5, subjective quantifiers (many/few), public announcement logic, etc.
- its internal structure has been extensively studied:
 - it contains 4 weak Jacoby-Sesmat-Blanché hexagons (Pellissier)
 - it contains 6 strong JSB hexagons (Béziau, Moretti, HS)
 - it contains 12 Sherwood-Czezowski hexagons
 - it contains 6 Buridan octagons
 - complementarity between JSB hexagons and Buridan octagons (HS, LD)
 - \Rightarrow all these properties straightforwardly carry over from the object-logical to the metalogical level

(HS,LD)

HS, LD)

ullet strong and weak notions of (sub)contrariety: φ and ψ are

strongly S-contrary	iff	$S\models \neg(\varphi\wedge\psi)$	and	$S \not\models \varphi \lor \psi$
weakly S-contrary	iff	$S \models \neg(\varphi \land \psi)$		
strongly S-subcontrary	iff	$S \not\models \neg(\varphi \land \psi)$	and	$S\models\varphi\lor\psi$
weakly S-subcontrary	iff			$S\models\varphi\vee\psi$

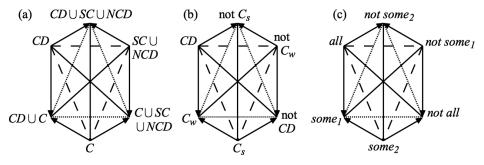
- Humberstone: "traditionalist approach" vs "modernist approach"
- connection with the opposition relations:

$$C_s = C$$
 $SC_s = SC$
 $C_w = CD \cup C$ $SC_w = CD \cup SC$

• note that $CD = C_w \cap SC_w$

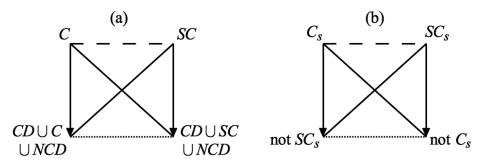
Metalogical Decorations of Logical Diagrams - L. Demey, H. Smessaert

A JSB Hexagon for Strong and Weak Contrariety

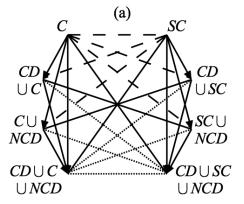


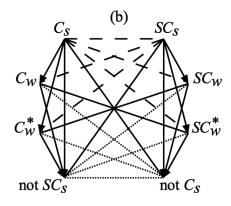
- pragmatic perspective:
 - $\langle CD, C_w \rangle$ forms a Horn scale
 - saying C_w triggers the scalar implicature not-CD
 - ullet total meaning becomes: C_w but not CD, i.e. C_s
- analogy: unilateral and bilateral some
 - at least one versus some but not all

Metalogical Decorations of Logical Diagrams – L. Demey, H. Smessaert



- the subalternation from C_s to not- SC_s can be split up by putting C_w in between
- the subalternation from SC_s to not- C_s can be split up by putting SC_w in between

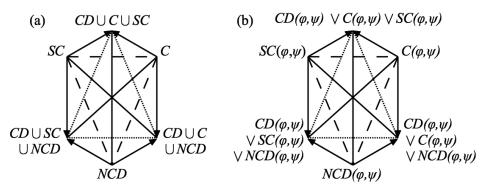




KU LEUVEN

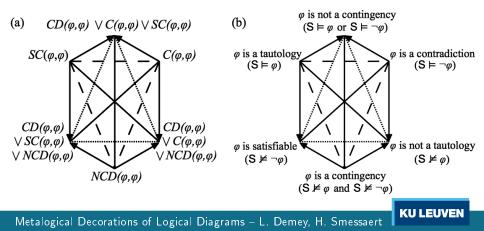
Metalogical Decorations of Logical Diagrams - L. Demey, H. Smessaert

- in terms of relations
- ullet in terms of statements about formulas $arphi,\,\psi$



A JSB Hexagon inside the Aristotelian RDH

- what happens if we fill in the same formula twice (i.e. $\varphi = \psi$)?
- we obtain well-known metalogical notions
- this hexagon was first studied by Béziau



KU LEUVEN

1 Preliminaries

- Aristotelian Diagrams for the Opposition Relations
- Aristotelian Diagrams for the Implication Relations
 - 4 Aristotelian Diagrams for the Aristotelian Relations
 - 5 Aristotelian Diagrams for the Duality Relations
 - Onclusion

Metalogical Decorations of Logical Diagrams – L. Demey, H. Smessaert

${\ensuremath{\bullet}}$ the implication relations closely resemble the opposition relations

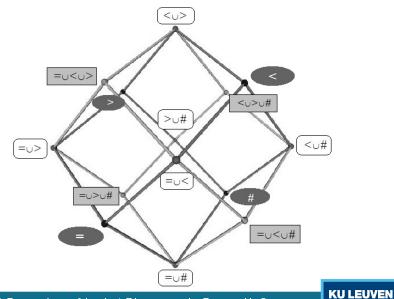
$CD(arphi,\psi)$	iff	$BI(\varphi, \neg \psi)$
$C(arphi,\psi)$	iff	$LI(\varphi, \neg \psi)$
$SC(arphi,\psi)$	iff	$RI(\varphi, \neg \psi)$
$NCD(arphi,\psi)$	iff	$NI(\varphi, \neg \psi)$

- \bullet the implication relations form a partition of $\mathbb{B}(S)\times\mathbb{B}(S)$
 - \Rightarrow atoms of a Boolean algebra
 - \Rightarrow Hasse RDH for this Boolean algebra
 - \Rightarrow Aristotelian RDH for this Boolean algebra
 - \Rightarrow study the subdiagrams of this Aristotelian RDH

Metalogical Decorations of Logical Diagrams - L. Demey, H. Smessaert

- ullet consider an arbitrary partial order \leq on some set X
- some notions:
 - $x < y :\Leftrightarrow (x \le y \text{ and } x \ne y)$
 - $x > y :\Leftrightarrow (x \ge y \text{ and } x \ne y)$
 - $x \# y :\Leftrightarrow \operatorname{not}(x < y \text{ or } x > y)$
- \bullet easy to show: =, <, >, # form a partition of S
- if \leq happens to be the \models -relation on $\mathbb{B}(S)$:
 - = corresponds to BI
 - < corresponds to LI
 - > corresponds to RI
 - # corresponds to NI

An Aristotelian RDH for Partial Orders

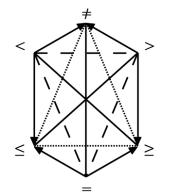


Metalogical Decorations of Logical Diagrams – L. Demey, H. Smessaert

- from partial order to total order:
 - $\bullet\,$ impose the additional axiom of totality: $\forall x,y\in S:x\leq y\,\, {\rm or}\,\, x\geq y$
 - ullet equivalently, impose the assumption that $\#=\emptyset$
- effect on the Aristotelian RDH: pairwise collapses:

RDH		collapse	collapse		RDH
BI	\rightarrow	BI	$LI \cup RI$	\leftarrow	$LI \cup RI \cup NI$
$BI \cup NI$	\nearrow			K	$LI \cup RI$
LI	\rightarrow	LI	$BI \cup RI$	\leftarrow	$BI \cup RI \cup NI$
$LI \cup NI$	\nearrow			K	$BI \cup RI$
RI	\rightarrow	RI	$BI \cup LI$	\leftarrow	$BI \cup LI \cup NI$
$RI \cup NI$	\nearrow			K	$BI \cup LI$
NI	\rightarrow	[Ø]	$[BI \cup LI \cup RI]$	\leftarrow	$BI \cup LI \cup RI$
[Ø]	\nearrow			K	$[BI \cup LI \cup RI \cup NI]$

- the Aristotelian RDH collapses into a strong JSB hexagon
- this hexagon was already known by Blanché (= the 'B' in 'JSB')



1 Preliminaries

- 2 Aristotelian Diagrams for the Opposition Relations
- 3 Aristotelian Diagrams for the Implication Relations
- 4 Aristotelian Diagrams for the Aristotelian Relations
- 5 Aristotelian Diagrams for the Duality Relations
- 6 Conclusion

Metalogical Decorations of Logical Diagrams – L. Demey, H. Smessaert

Mixing Opposition and Implication Relations

- \bullet Aristotelian = hybrid between opposition/implication
 - \Rightarrow some Aristotelian diagrams for opposition/implication relations can also be viewed as Aristotelian diagrams for the Aristotelian relations

(e.g. Buridan octagon for strong/weak (sub)contrariety)

- but: in each of these diagrams:
 - either only opposition relations
 - or only implication relations

• now: diagrams that contain both opposition and implication relations

Metalogical Decorations of Logical Diagrams – L. Demey, H. Smessaert

• already in the 80s, Löbner claimed that the following four relations form an Aristotelian square:

compatibility implication contrariety non-implication

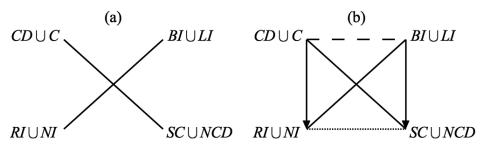
Metalogical Decorations of Logical Diagrams - L. Demey, H. Smessaert

• already in the 80s, Löbner claimed that the following four relations form an Aristotelian square:

compatibility	$\not\models \neg(\varphi \wedge \psi)$	$SC \cup NCD$
implication	$\models \varphi \to \psi$	$BI \cup LI$
contrariety	$\models \neg(\varphi \land \psi)$	$CD \cup C$
non-implication	$\not\models \varphi \to \psi$	$RI \cup NI$

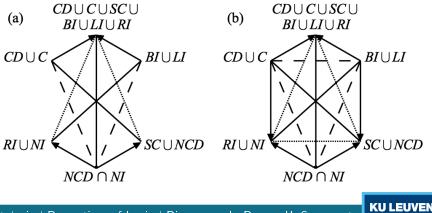
 \bullet note that these are weak opposition and implication relations: $SC_w^*, LI_w, C_w, RI_w^*$

- these four indeed form a square, but this square is
 - classical iff the relations' first argument (arphi) is assumed to be satisfiable
 - degenerated otherwise (Béziau: "an X of opposition")



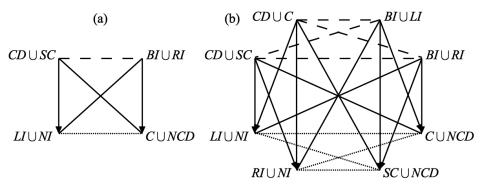
Seuren's Aristotelian Hexagon

- Seuren (2014): 6 relations, forming a JSB hexagon ⇒ translate into opposition/implication terminology
 - a JSB hexagon iff the relations' first argument is satisfiable
 - a U4 (= partially degenerated JSB) hexagon otherwise



Metalogical Decorations of Logical Diagrams - L. Demey, H. Smessaert

- recall Löbner's relations:
 - 4 weak opposition/implication relations: $SC_w^*, LI_w, C_w, RI_w^*$
 - classical square iff $\varphi \neq \bot$
- completely analogously:
 - 4 other weak opposition/implication relations: $SC_w, LI_w^*, C_w^*, RI_w$
 - classical square iff $\varphi \neq \top$
- combination of these two squares:
 - all 8 weak opposition/implication relations together
 - minimal assumption: contingency of φ ($\varphi \neq \bot$ and $\varphi \neq \top$)
 - ullet interesting if we also assume contingency of ψ
- importance of the resulting octagon:
 - metalogical analogue of an octagon for syllogistics with subject negation (Keynes, Johnson, Hacker, Reichenbach)
 - duality at metalogical level (Libert 2012)



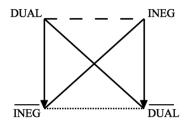
KU LEUVEN

1 Preliminaries

- 2 Aristotelian Diagrams for the Opposition Relations
- 3 Aristotelian Diagrams for the Implication Relations
- 4 Aristotelian Diagrams for the Aristotelian Relations
- 6 Aristotelian Diagrams for the Duality Relations
 - 6 Conclusion

Metalogical Decorations of Logical Diagrams – L. Demey, H. Smessaert

- consider the set of binary propositional connectives $\mathbb{B}(\mathsf{CPL})\times\mathbb{B}(\mathsf{CPL})\to\mathbb{B}(\mathsf{CPL})$
- claim: DUAL \cap INEG = \emptyset
 - if there exists $(O_1, O_2) \in \text{DUAL} \cap \text{INEG}$, then $O_1 = \neg O_2(\neg, \neg)$ and $O_1 = O_2(\neg, \neg)$, and hence $\neg O_2(\neg, \neg) = O_2(\neg, \neg)$, and hence $\neg O_2(\neg p, \neg q) \equiv_{\text{CPL}} O_2(\neg p, \neg q)$, which is of the form $\neg \varphi \equiv_{\text{CPL}} \varphi \not z$
- $\bullet \text{ claim: DUAL} \cup \text{INEG} \neq \mathbb{B}(\mathsf{CPL})^{\mathbb{B}(\mathsf{CPL}) \times \mathbb{B}(\mathsf{CPL})} \times \mathbb{B}(\mathsf{CPL})^{\mathbb{B}(\mathsf{CPL}) \times \mathbb{B}(\mathsf{CPL})}$
 - there are pairs of binary propositional connectives that are neither each other's duals nor each other's internal negations (e.g. \land and \rightarrow)
- hence, DUAL and INEG are contraries
- this gives rise to an Aristotelian square



KU LEUVEN

1 Preliminaries

- 2 Aristotelian Diagrams for the Opposition Relations
- 3 Aristotelian Diagrams for the Implication Relations
- 4 Aristotelian Diagrams for the Aristotelian Relations
- 5 Aristotelian Diagrams for the Duality Relations
- 6 Conclusion

Metalogical Decorations of Logical Diagrams – L. Demey, H. Smessaert

Overview

- a logical diagram depends on two parameters:
 - decoration: the elements occurring in the diagram
 - type: the type of logical relations between those elements

• in this talk:

	deco.	Aristotelian	opposition	implication	duality
type					
Aristotelian		•	٠	٠	•
opposition				—	
implication					
duality		0	0	0	0

(vertices)

KU LEUVEN

(edges)

Conclusion

- construct Aristotelian (and other) diagrams with metalogical decorations (in a mathematically precise sense; not just "loosely speaking")
- various connections, observations and techniques:

۲	connections between families of diagrams	(JSB, SC, Buridan, RDH)
۲	connections between authors	(Béziau, Seuren, Löbner, Libert)
۲	linguistic observations	(strong/weak contrariety)
۲	dependence on additional assumptions	(satisfiability of 1st argument)
۰	bitstring semantics	(length 4 bitstrings for RDH)
es	e are the counterparts of similar (and	well-studied) connections.

• these are the counterparts of similar (and well-studied) connections, observations, techniques at the object-logical level

 \Rightarrow fundamental continuity between object- and metalogical decorations!

Metalogical Decorations of Logical Diagrams - L. Demey, H. Smessaert

Thank you!

More info: www.logicalgeometry.org

Metalogical Decorations of Logical Diagrams - L. Demey, H. Smessaert