

The Relationship between Aristotelian and Hasse Diagrams

Lorenz Demey and Hans Smessaert

Diagrams 2014, Melbourne

Introduction

- 2 Aristotelian Diagrams and Hasse Diagrams
- 3 Comparison
- 4 Unified Account: Visual-Cognitive Aspects
- 5 A Unified Account: Logico-Geometrical Aspects
- 6 Conclusion

KU LEUVEN

Introduction

- various families of diagrams used in logic:
 - Aristotelian diagrams
 - Hasse diagrams
 - duality diagrams
 - Euler diagrams
 - spider diagrams
 - Peirce's existential graphs

...

1 diagram $\leftrightarrow \#$ formulas

1 diagram ↔ 1 formula

KU LEUV

this talk: focus on Aristotelian diagrams and Hasse diagrams

- what do these two types of diagrams look like?
- comparison of the two types
- a unified account: visual-cognitive aspects
- a unified account: logico-geometrical aspects

Introduction

2 Aristotelian Diagrams and Hasse Diagrams

3 Comparison

4 A Unified Account: Visual-Cognitive Aspects

5 A Unified Account: Logico-Geometrical Aspects

Conclusion

Aristotelian and Hasse Diagrams – L. Demey & H. Smessaert

KU LEUVEN

 \bullet the Aristotelian relations: φ and ψ are

• almost all Aristotelian diagrams in the literature satisfy the following:

- the formulas are contingent
- the formulas are *pairwise non-equivalent*
- the formulas come in *contradictory pairs* $(\varphi \neg \varphi)$
- these pairs are ordered around a center of symmetry
- Aristotelian diagrams in logic:
 - very long and rich tradition (Aristotle/Apuleius)
 - contemporary logic: lingua franca to talk about logical systems (modal logic, epistemic logic, dynamic logic, deontic logic, etc.)

and $\models \neg(\neg \varphi \land \neg \psi)$

and $\not\models \neg(\neg \varphi \land \neg \psi)$

and $\models \neg (\neg \varphi \land \neg \psi)$ and $\nvDash \psi \to \varphi$

KU LEUV

 $\Box p$

1000

1110

 $\Diamond p$

Jacoby-Sesmat-Blanché hexagon $\Box p \lor \neg \Diamond p$ 1001 $\Box p$ 1000 $\neg \Diamond p$ 0001 1110 0111 $\Diamond p$ $\exists p$ 0110 $\Diamond p \land \neg \Box p$

 $\Box p$

Béziau octagon

- a Hasse diagram visualizes a partially ordered set (P, \leq) :
 - $\begin{array}{ll} \leq \text{ is reflexive:} & \text{ for all } x \in P : x \leq x \\ \leq \text{ is transitive:} & \text{ for all } x, y, z \in P : x \leq y, y \leq z \Rightarrow x \leq z \\ < \text{ is antisymmetric:} & \text{ for all } x, y \in P : x \leq y, y \leq x \Rightarrow x = y \end{array}$
- Hasse diagrams in logic and mathematics:
 - $\begin{array}{ll} \text{divisibility poset} & x \leq y \text{ iff } x \text{ divides } y \\ \text{subgroup lattices} & x \leq y \text{ iff } x \text{ is a subgroup of } y \\ \text{logic/Boolean algebra} & x \leq y \text{ iff } x \text{ logically entails } y \end{array}$
- we focus on Boolean algebras
 - always have a Hasse diagram that is centrally symmetric
 - can be partitioned into 'levels' L_0, L_1, L_2, \ldots

$$\blacktriangleright L_0 = \{\bot\}$$

- $\blacktriangleright \ L_{i+1} = \{ y \mid \exists x \in L_i : x \triangleleft y \}$
- for all $x, y \in L_i : x \not\leq y$ and $y \not\leq x$

Aristotelian and Hasse Diagrams – L. Demey & H. Smessaert

KU LEU

Some examples:

- (a) the divisors of 12
- (b) the Boolean algebra $\wp(\{1,2,3\})$
- (c) a Boolean algebra of formulas from the modal logic S5

KU LEU

Three-dimensional Diagrams

- recent years: move toward 3D diagrams
- example: rhombic dodecahedron

 (a) as an Aristotelian diagram
 (b) as a Hasse diagram

(Moretti, Smessaert, etc.) (Zellweger, Kauffman, etc.)

KU LEUVEN

KU LEUVEN

Introduction

- 2 Aristotelian Diagrams and Hasse Diagrams
- 3 Comparison
- 4 A Unified Account: Visual-Cognitive Aspects
- 5 A Unified Account: Logico-Geometrical Aspects
- 6 Conclusion

Comparison

- 3 differences
 - ${\small \bullet} {\small \bullet} {\small the non-contingent formulas \perp and \top}$
 - the general direction of the entailments
 - visualization of the levels
- \bullet the non-contingent formulas \perp and \top
 - $\bullet\,$ Hasse diagrams: begin- and endpoint of the \leq -ordering
 - Aristotelian diagrams: \perp and \top usually not visualized
 - ullet Sauriol, Smessaert, etc.: ot and ot coincide in the center of symmetry

Aristotelian and Hasse Diagrams – L. Demey & H. Smessaert

KU LEU

Comparison

- the general direction of the entailments
 - Hasse diagrams: all entailments go upwards
 - Aristotelian diagrams: no single shared direction
- visualization of the levels
 - Hasse diagrams: levels L_i are visualized as horizontal hyperplanes
 - Aristotelian diagrams: no uniform visualization of levels

Aristotelian and Hasse Diagrams – L. Demey & H. Smessaert

KU LEUV

KU LEUVEN

Introduction

- 2 Aristotelian Diagrams and Hasse Diagrams
- 3 Comparison
- 4 A Unified Account: Visual-Cognitive Aspects
- 5 A Unified Account: Logico-Geometrical Aspects
 - 6 Conclusion

- dissimilarities explained by general cognitive principles (Tversky et al.):
 - **Congruity Principle**: content/structure of visualization correspond to content/structure of desired mental representation
 - Apprehension Principle: content/structure of visualization are readily and correctly perceived and understood
 - information selection/omision and simplification/distortion
- different visual properties ++++ different goals
 - Aristotelian diagrams: visualize the Aristotelian relations
 - ullet Hasse diagrams: visualize the structure of the entailment ordering \leq
- Hasse diagrams: strong congruence between logical & visual properties
 - shared direction of entailment (vertically upward)
 - levels as horizontal lines/planes
 - $\blacktriangleright \ \, \text{if} \ \varphi, \psi \in L_i \text{, then} \ \varphi \not\leq \psi \ \text{and} \ \psi \not\leq \varphi$
 - \blacktriangleright formulas of a single level are *independent* of each other w.r.t. \leq
 - ▶ $|eve| = horizonta| \Rightarrow orthogonal$ to the vertical ≤-direction

KU LEUVE

- consider the three S5-formulas $\Box p$, $\Box \neg p$, $\Diamond p \land \Diamond \neg p$
 - Hasse perspective: all belong to $L_1 \Rightarrow$ horizontal line
 - Aristotelian perspective: all contrary to each other
- ullet the contrariety between $\Box p$ and $\Box \neg p$ overlaps with the two others
 - serious violation of the apprehension principle
 - direct reason: the three formulas lie on a single line
- this is solved in the Aristotelian diagram:
 - move $\Diamond p \land \Diamond \neg p$ away from the line between $\Box p$ and $\Box \neg p$
 - triangle of contrarieties \Rightarrow in line with apprehension principle
 - ullet mixing of levels, no single entailment direction, ot moves to middle

KU LEUVEN

Introduction

- 2 Aristotelian Diagrams and Hasse Diagrams
- 3 Comparison
- 4 Unified Account: Visual-Cognitive Aspects
- 5 A Unified Account: Logico-Geometrical Aspects
 - 6 Conclusion

- we restrict ourselves to Aristotelian diagrams that are Boolean closed
 - Boolean closed: JSB hexagon, RDH, ...
 - not Boolean closed: the square, the Béziau octagon, ...
- this is no substantial restriction
 - every Aristotelian diagram embeds into one that is Boolean closed
 - the square embeds into JSB, the Béziau octagon embeds into RDH,
- this presentation: intuitive explanations, low-dimensional examples
 - mathematical detail
 - full generality

 \Rightarrow see the paper

high-dimensional cases

- ullet consider the Boolean algebra \mathbb{B}_3
 - \mathbb{B}_3 has $2^3 = 8$ elements
 - elements: e.g. formulas of the modal logic S5
 - canonical representation: bitstrings

 $\bullet\,$ the Hasse diagram of \mathbb{B}_3 can be drawn as a three-dimensional cube

- general entailment direction runs from 000 to 111
- logical levels +++> planes orthogonal to the entailment direction

KU LEUV

Aristotelian and Hasse Diagrams - L. Demey & H. Smessaert

19

KU LEUVEN

- in (a) the cube consists of 4 pairs of diametrically opposed vertices:
 - 3 contingent pairs: 101-010, 110-001, 011-100
 - 1 non-contingent pair: 111—000
 - each pair defines a projection axis for a vertex-first projection:
- in (b) projection along 111-000 axis
- in (c) projection along 101-010 axis

- the vertex-first projections from 3D cube to 2D hexagon:

 (a) projection along 111—000 ⇒ Aristotelian diagram (JSB)
 (b) projection along 101—010 ⇒ Hasse diagram (almost)
- if we slightly 'nudge' the projection axis 101-010, we get: (c) projection 'along' $101-010 \Rightarrow$ Hasse diagram

- Aristotelian and Hasse diagram: both vertex-first projections of cube
 - Aristotelian diagram: project along the entailment direction
 - Hasse diagram: project along another direction
- recall the dissimilarities between Aristotelian and Hasse diagrams:
 - $\textcircled{0} \hspace{0.1in} \text{the position of } \bot \hspace{0.1in} \text{and} \hspace{0.1in} \top$
 - the general direction of the entailments
 - the visualization of the levels
- these three differences turn out to be interrelated: different manifestations of a single choice (projection direction)
- now illustrate these differences by means of more basic vertex-first projections from 2D square to 1D line

KU LEUV

difference 1: the position of \perp and \top

the square is a Hasse diagram $\Rightarrow \bot$ and \top as lowest and highest point (a) project along other direction $\Rightarrow \bot$ and \top still as lowest and highest (b) project along the \top/\bot direction $\Rightarrow \bot$ and \top coincide in the center

difference 2: the general direction of the entailments

the square is a Hasse diagram \Rightarrow general entailment direction is upwards

(a) project along other direction \Rightarrow general entailment direction is still upwards (b) project along the \top/\bot direction \Rightarrow no longer a general entailment direction

difference 3: the visualization of the levels

the square is a Hasse diagram \Rightarrow uniform (horizontal) levels

(a) project along other direction \Rightarrow still uniform (horizontal) levels (b) project along the \top/\bot direction \Rightarrow mixing of levels

26

KU LEUVEN

Introduction

- 2 Aristotelian Diagrams and Hasse Diagrams
- 3 Comparison
- 4 A Unified Account: Visual-Cognitive Aspects
- 6 A Unified Account: Logico-Geometrical Aspects
- 6 Conclusion

Conclusion

- visual differences between Aristotelian and Hasse diagrams
 - the issue of \perp and \top (present/absent)
 - the general direction of the entailments (shared/not shared)
 - the visualization of the levels (uniform/mixed)
- unified account of Aristotelian and Hasse diagrams

 - geometrical part: three types of visual differences
 = three manifestations of a single choice:

Aristotelian diagram \Leftarrow vertex-first projection along \top/\bot direction Hasse diagram \Leftarrow vertex-first projection along another direction

Aristotelian and Hasse Diagrams - L. Demey & H. Smessaert

KU LEUVE

Conclusion

• generalization of the vertex-first projections:

- from 2D square to 1D line
- from 3D cube to 2D hexagon
- from 4D hypercube to 3D rhombic dodecahedron

Thank you!

More info: www.logicalgeometry.org

KU LEUVEN