KU LEUVEN

Algebraic and Cognitive Aspects of Presenting Aristotelian Diagrams

Lorenz Demey and Hans Smessaert

Structure of the talk

(1) Introduction
(2) Preliminaries
(3) Diagrams with 4 formulas
(4) Diagrams with 6 formulas
(5) Conclusion

Structure of the talk

(1) Introduction

(2) Preliminaries

(3) Diagrams with 4 formulas

4 Diagrams with 6 formulas

Presenting Aristotelian Diagrams - L. Demey \& H. Smessaert

Introduction

- recent years: renewed theoretical interest in the square of oppositions
- extensions: e.g. hexagons, octagons, cubes, RDHs, etc.
- families: e.g. Sesmat-Blanché hexagon vs. Sherwood-Czezowski hexagon
- interrelations: e.g. 6 Sesmat-Blanché hexagons embedded inside RDH
\Rightarrow strong identification between diagram and its formulas:
1 Aristotelian diagram $\rightsquigarrow 1$ set of formulas
- different sets of formulas for 1 Aristotelian diagram
- case studies on different decorations (<logical systems, lexical fields)
- e.g. Sesmat-Blanché hexagon for modal logic vs. subjective quantification
- different Aristotelian diagrams for 1 set of formulas (\Rightarrow our focus today)
- e.g. set of 4 formulas: square with subalternations $\downarrow \downarrow$ vs. \rightrightarrows vs. $\uparrow \uparrow$ vs. \leftleftarrows
- e.g. set of 6 formulas: hexagon (2D) vs. octahedron (3D)
- e.g. set of 8 formulas: octagon (2D) vs. cube (3D)

Structure of the talk

(1) Introduction

(2) Preliminaries

(3) Diagrams with 4 formulas

4 Diagrams with 6 formulas

Presenting Aristotelian Diagrams - L. Demey \& H. Smessaert

- logical requirement: diagrams that are closed under negation \Rightarrow set of $2 n$ formulas $=$ set of n pairs of contradictory formulas (PCDs)
- geometrical requirement: PCDs share a central symmetry point
- nearly all Arist. diagrams in the literature satisfy these requirements
- example: Sesmat-Blanché hexagon for modal logic S5

Presenting Aristotelian Diagrams - L. Demey \& H. Smessaert

- number of configurations of n PCDs: $n!\cdot 2^{n}$
- n ! permutations of the n PCDs
- each of the n PCDs can be put into the configuration in 2 ways:

$$
(\varphi, \neg \varphi) \text { or }(\neg \varphi, \varphi) \quad \Rightarrow 2 \times 2 \times \cdots \times 2=2^{n}
$$

- independent of concrete geometric visualization
- some concrete examples:

$$
\begin{array}{ll}
n=2: & 2!\cdot 2^{2}=2 \cdot 4=8 \\
n=3: & 3!\cdot 2^{3}=6 \cdot 8=48 \\
n=4: & 4!\cdot 2^{4}=24 \cdot 16=384
\end{array}
$$

Geometrical symmetries

- every diagram has a number of symmetries (= cardinality of its symmetry group)
- visualize n PCDs using a diagram D that has k symmetries $\Rightarrow \frac{n!\cdot 2^{n}}{k}$ fundamentally distinct presentations of D
- two presentations are fundamentally distinct iff one cannot be obtained by reflecting and/or rotating the other
- general aim:
fundamental geometrical differences should correspond (as much as possible) with logical differences

Structure of the talk

(3) Diagrams with 4 formulas

4 Diagrams with 6 formulas

Presenting Aristotelian Diagrams - L. Demey \& H. Smessaert

- given is a fixed set of 4 formulas, i.e. 2 PCDs $\Rightarrow 2!\cdot 2^{2}=8$ abstract configurations
- visualize these 8 abstract configurations using ordinary squares

Presenting Aristotelian Diagrams - L. Demey \& H. Smessaert

Diagrams with 4 formulas

- these 8 squares are symmetric and/or rotational variants of each other
- this should not be surprising:
- symmetry group of the square: dihedral group D_{4}
- D_{4} has 8 elements
- $\frac{2!\cdot 2^{2}}{\left|D_{4}\right|}=\frac{8}{8}=1$ fundamental presentation
- there is exactly one way (up to symmetries and rotations) of visualizing 4 formulas using a square
- fixed set of 6 formulas $/ 3$ PCDs $\Rightarrow 3!\cdot 2^{3}=48$ abstract configurations
- visualize these 48 abstract configurations using 48 hexagons
- symmetry group of the hexagon: D_{6} : 12 symmetries
$\Rightarrow \frac{48}{12}=4$ fundamental presentations of the hexagon
- visualize these 48 abstract configurations using 48 octahedrons
- symmetry group of the octahedron: $O_{h}: 48$ symmetries $\Rightarrow \frac{48}{48}=1$ fundamental presentation of the octahedron

Case study 1: Jacoby-Sesmat-Blanché σ_{3}

- 6 formulas: $\square p, \square \neg p, \diamond p, \diamond \neg p, \square p \vee \square \neg p, \diamond p \wedge \diamond \neg p$
- 4 fundamental presentations of the hexagon:

	1	2	3	4
SA direction	chaos	uniform	uniform	uniform
C/SC triangle	equilateral	isosceles	isosceles	isosceles
center	exclusively C/SC	mainly SA	mainly SA	mainly SA
periphery	exclusively SA	mainly C/SC	mainly C/SC	mainly C/SC
long	exclusively C/SC	mainly SA	mainly SA	mainly SA
short	exclusively SA	mainly C/SC	mainly C/SC	mainly C/SC

Presenting Aristotelian Diagrams - L. Demey \& H. Smessaert

Case study 1: Jacoby-Sesmat-Blanché σ_{3}

- 6 formulas: $\square p, \square \neg p, \diamond p, \diamond \neg p, \square p \vee \square \neg p, \diamond p \wedge \diamond \neg p$
- 4 fundamental presentations of the hexagon:

$\diamond p \wedge \diamond \neg p$

		1	2	3	4
SA direction		chaos	uniform	uniform	uniform
C/SC triangle	equilateral	isosceles	isosceles	isosceles	
center $\quad \dagger$	exclusively C/SC	mainly SA	mainly SA	mainly SA	
periphery $\dagger \dagger$	exclusively SA	mainly C/SC	mainly C/SC	mainly C/SC	
long	\dagger	exclusively C/SC	mainly SA	mainly SA	mainly SA
short	$\dagger \dagger$	exclusively SA	mainly C/SC	mainly C/SC	mainly C/SC

Presenting Aristotelian Diagrams - L. Demey \& H. Smessaert

- 6 formulas:

$$
p, \neg p, \square p \vee \neg \diamond p, \neg \square p \wedge \diamond p, \square p \vee(\neg p \wedge \diamond p), \neg \diamond p \vee(p \wedge \neg \square p)
$$

- fully degenerated:
- $\frac{6 \cdot 5}{2}=\frac{30}{2}=15$ pairs of formulas
- 3 pairs: contradictory ($\Rightarrow 3$ PCDs $\Rightarrow \sigma_{3}$)
- 12 other pairs: no Aristotelian relation whatsoever (unconnectedness)
- 4 fundamental presentations of the hexagon:

- no differences between the 4 presentations whatsoever!
- Jacoby-Sesmat-Blanché σ_{3}
- 4 fundamental presentations of the hexagon: geometrical differences
- corresponding logical differences: 1 vs 2,3,4
\Rightarrow hexagon visualization is preferred!
- fully degenerated σ_{3} ($12 \times$ unconnectedness)
- 4 fundamental presentations of the hexagon: geometrical differences
- no corresponding logical differences whatsoever
\Rightarrow octahedron visualization is preferred!
- what about other types of σ_{3} ?
- Sherwood-Czezowksi
- minimally degenerated ($4 \times$ unconnectedness)
- intermediately degenerated ($8 \times$ unconnectedness)
(5) Conclusion
- systematic study of the different diagrams for a fixed set of formulas
- general case: $\sigma_{n} \Rightarrow$ concrete visualizations vs abstract mathematics
- a simple two-dimensional regular $2 n$-gon has $4 n$ symmetries

$$
\Rightarrow \frac{n!\cdot 2^{n}}{4 n}=(n-1)!\cdot 2^{n-2} \text { fundamental presentations }
$$

- in abstract n-dimensional space: cross-polytope
- dual of the n-dimensional hypercube
- centrally symmetric polytope with $2 n$ vertices and $n!\cdot 2^{n}$ symmetries $\Rightarrow \frac{n!\cdot 2^{n}}{n!\cdot 2^{n}}=1$ fundamental presentation
- concrete illustration: σ_{4} (Buridan, Béziau, Moretti, ...)
\triangleright 2D octagon $\frac{4!\cdot 2^{4}}{4 \cdot 4}=\frac{384}{16}=24$ fundamental presentations
$\triangleright 4$ 16-cell $\quad \frac{4!\cdot 2^{4}}{4!\cdot 2^{4}}=\frac{384}{384}=1$ fundamental presentation
- systematic study of the different diagrams for a fixed set of formulas
- general case: $\sigma_{n} \Rightarrow$ concrete visualizations vs abstract mathematics
- a simple two-dimensional regular $2 n$-gon has $4 n$ symmetries

$$
\Rightarrow \frac{n!\cdot 2^{n}}{4 n}=(n-1)!\cdot 2^{n-2} \text { fundamental presentations }
$$

- in abstract n-dimensional space: cross-polytope
- dual of the n-dimensional hypercube
- centrally symmetric polytope with $2 n$ vertices and $n!\cdot 2^{n}$ symmetries $\Rightarrow \frac{n!\cdot 2^{n}}{n!\cdot 2^{n}}=1$ fundamental presentation
- concrete illustration: σ_{4} (Buridan, Béziau, Moretti, ...)
\triangleright 2D octagon $\frac{4!\cdot 2^{4}}{4 \cdot 4}=\frac{384}{16}=24$ fundamental presentations
$\triangleright \quad 4 \mathrm{D} \quad 16$-cell $\quad \frac{4!\cdot 2^{4}}{4!\cdot 2^{4}}=\frac{384}{384}=1$ fundamental presentation
- systematic study of the different diagrams for a fixed set of formulas
- general case: $\sigma_{n} \Rightarrow$ concrete visualizations vs abstract mathematics
- a simple two-dimensional regular $2 n$-gon has $4 n$ symmetries

$$
\Rightarrow \frac{n!\cdot 2^{n}}{4 n}=(n-1)!\cdot 2^{n-2} \text { fundamental presentations }
$$

- in abstract n-dimensional space: cross-polytope
- dual of the n-dimensional hypercube
- centrally symmetric polytope with $2 n$ vertices and $n!\cdot 2^{n}$ symmetries $\Rightarrow \frac{n!\cdot 2^{n}}{n!\cdot 2^{n}}=1$ fundamental presentation
- concrete illustration: σ_{4} (Buridan, Béziau, Moretti, ...)
\triangleright 2D octagon $\frac{4!\cdot 2^{4}}{4 \cdot 4}=\frac{384}{16}=24$ fundamental presentations
\triangleright 3D cube $\frac{4!\cdot 2^{4}}{48}=\frac{384}{48}=8$ fundamental presentations
\triangleright 4D 16-cell $\quad \frac{4!\cdot 2^{4}}{4!\cdot 2^{4}}=\frac{384}{384}=1$ fundamental presentation

Thank you!

More info: www.logicalgeometry.org

