KU LEUVEN

Aristotelian and Duality Relations Beyond the Square of Opposition

Lorenz Demey and Hans Smessaert

Square 2018

Introduction

Square of opposition:

- represents four propositions, and logical relations between them
- has a long and well-documented history in analytic philosophy, logic and other disciplines
- visually represents the Aristotelian relations of contradiction, contrariety, subcontrariety, and subalternation.
- nearly always also exhibits another type of logical relations, viz. the duality relations of internal negation, external negation and duality.
- Based on diagrams in the literature, the notions of Aristotelian square and duality square seem almost co-extensional.
- But, clear conceptual differences between the two!

Introduction

Logical Geometry:

- systematic study of logical diagrams in general, and Aristotelian diagrams and duality diagrams in particular, in terms of:
- cognitive and geometric notions: such as informational vs. computational equivalence, Euclidean distance, vertex-first projections and subdiagrams
- logical issues: diagram informativity, logic-sensitivity, diagram classification and Boolean structure.
- Visual and logical properties of Aristotelian and duality diagrams in isolation are relatively well-understood.

Aim and claims of the paper:

- get clearer picture of interconnections between the two types.
- octagons are natural extensions/generalizations of the classical square, both from an Aristotelian and duality perspective.
- correspondence is lost on the level of individual relations and diagrams.
- correspondence is maintained on a more abstract level.

Structure of the talk

(1) Introduction
(2) Aristotelian and Duality Squares
(3) (In)dependence of Aristotelian and Duality Diagrams
(4) Octagons for Composed Operator Duality

- Buridan Octagon in Modal Syllogistics
- Lenzen Octagon in Modal Logic S4.2
(5) Octagons for Generalized Post Duality
- Keynes-Johnson Octagon in Syllogistics with subject negation
- Moretti Octagon in Propositional Logic
(6) Conclusion

Structure of the talk

(1) Introduction

(2) Aristotelian and Duality Squares
(3) (In)dependence of Aristotelian and Duality Diagrams
(4) Octagons for Composed Operator Duality

- Buridan Octagon in Modal Syllogistics
- Lenzen Octagon in Modal Logic S4.2
(5) Octagons for Generalized Post Duality
- Keynes-Johnson Octagon in Syllogistics with subject negation
- Moretti Octagon in Propositional Logic
two propositions are:

contradictory	iff	they cannot be true together
(CD)	and	they cannot be false together,
contrary	iff	they cannot be true together
(C)	but	they can be false together,
subcontrary	iff	they can be true together
(SC)	but	they cannot be false together,
in subalternation	iff	the first one entails the second one
(SA)	but	the second one does not entail the first one.

some standard examples:

Aristotelian relations and squares

Contradiction relation:

- most important and informative Aristotelian relation: each proposition φ has a unique contradictory (up to logical equivalence), viz. $\neg \varphi$.
- Almost all Aristotelian diagrams in the literature are closed under contradiction: if the diagram contains φ, then it also contains $\neg \varphi \Rightarrow$ visualized by means of central symmetry $=$ diagonals of diagram.
- The propositions in an Aristotelian diagram can naturally be grouped into pairs of contradictory propositions (PCDs)

Aristotelian diagrams:

- Shift of perspective: a square does not really consist of 4 'individual' propositions, but rather of 2 PCDs .
- Natural extension beyond the square, viz. by adding more PCDs:
- logically: from 2 PCDs to 3 PCDs to 4 PCDs to ...
- geometrically: from square to hexagon to octagon to ...

Duality relations and squares

- Suppose that two formulas φ and ψ are the results of applying n-ary operators O_{φ} and O_{ψ} to the same n propositions $\alpha_{1}, \ldots, \alpha_{n}$
- i.e. $\varphi \equiv O_{\varphi}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\psi \equiv O_{\psi}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
- Then φ and ψ are each other's:
external negation iff $O_{\varphi}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \equiv \neg O_{\psi}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, (ENEG)
internal negation iff
$O_{\varphi}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \equiv O_{\psi}\left(\neg \alpha_{1}, \ldots, \neg \alpha_{n}\right)$, (INEG)
dual
(DUAL)

$$
\text { iff } \quad O_{\varphi}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \equiv \neg O_{\psi}\left(\neg \alpha_{1}, \ldots, \neg \alpha_{n}\right)
$$

Duality relations and squares

the same standard examples:

- functional (up to logical equivalence): $\operatorname{if} \operatorname{INEG}\left(\varphi, \psi_{1}\right)$ and $\operatorname{INEG}\left(\varphi, \psi_{2}\right)$, then $\psi_{1} \equiv \psi_{2}$, so we write $\psi=\operatorname{INEG}(\varphi)$ instead of $\operatorname{INEG}(\varphi, \psi)$.
- symmetrical: DUAL (φ, ψ) iff $\operatorname{DUAL}(\psi, \varphi)$
- the functions are idempotent: : $\operatorname{ENEG}(\operatorname{ENEG}(\varphi))=\varphi$
- \Rightarrow define identity function $\operatorname{ID}(\varphi):=\varphi$ for all φ.

Duality relations and squares

The four duality functions ENEG, INEG, DUAL and ID form a Klein 4-group under composition (०) with the following Cayley table:

\circ	ID	ENEG	INEG	DUAL
ID	ID	ENEG	INEG	DUAL
ENEG	ENEG	ID	DUAL	INEG
INEG	INEG	DUAL	ID	ENEG
DUAL	DUAL	INEG	ENEG	ID

- Klein 4-group is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$: each \mathbb{Z}_{2} copy governs its own negation: ID $\sim(0,0)$, ENEG $\sim(1,0)$, INEG $\sim(0,1)$, and DUAL $\sim(1,1)$.
- Natural extension beyond the square of opposition by adding more independent negation positions (i.e. by adding more copies of \mathbb{Z}_{2}):
- logically: from $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ (2 negation positions $\Rightarrow 2^{2}=4$ duality functions) to $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ (3 negation positions $\Rightarrow 2^{3}=8$ duality functions)
- geometrically: from square to cube/octagon to ...

Structure of the talk

(3) (In)dependence of Aristotelian and Duality Diagrams
(4) Octagons for Composed Operator Duality

- Buridan Octagon in Modal Syllogistics
- Lenzen Octagon in Modal Logic S4.2
(5) Octagons for Generalized Post Duality
- Keynes-Johnson Octagon in Syllogistics with subject negation
- Moretti Octagon in Propositional Logic

Aristotelian/Duality Multigraphs (ADMs)

An Aristotelian/duality multigraph (ADM) visualizes how many times a specific combination of Aristotelian and duality relation occurs in the square.

Correspondence between Aristotelian and duality relations is not perfect, but still highly regular.

Correspondence between Aristotelian and duality relations is not perfect, but still highly regular.

- each Aristotelian relation corresponds to a unique duality relation.

Correspondence between Aristotelian and duality relations is not perfect, but still highly regular.

- each Aristotelian relation corresponds to a unique duality relation.
- vice versa, duality relations
- ENEG, DUAL and ID correspond to a unique Aristotelian relation
- ineg corresponds to two Aristotelian relations.

Aristotelian/Duality Multigraph (ADM)

EQ

 ID

Correspondence between Aristotelian and duality relations is not perfect, but still highly regular.

- each Aristotelian relation corresponds to a unique duality relation.
- vice versa, duality relations:
- ENEG, DUAL and ID correspond to a unique Aristotelian relation
- InEG corresponds to two Aristotelian relations.
- ADM for the square of opposition has 4 connected components, viz. $\{C D$, ENEG $\},\{C, S C$, INEG $\},\{S A, D U A L\}$ and $\{E Q$, ID $\}$

(In)dependence of Aristotelian and Duality Diagrams

Close correspondence leads to quasi-identification of two types of squares:

- using Aristotelian terminology to describe duality square (or vice versa)
- viewing one as a generalization of the other

Still some crucial differences:

- Duality relations all symmetric \Leftrightarrow Aristotelian $S A$ is asymmetric
- Duality relations all functional \Leftrightarrow Aristotelian $C, S C$ and $S A$ are not
- (logic-sensitivity \Rightarrow see full paper)

Most powerful way to argue for independence of Aristotelian and duality diagrams consists in analyzing diagrams beyond the square.

- first attempt - from square to hexagon - was misguided: hexagon is natural extension from Aristotelian but not from Duality Perspective.
- natural generalisation from both perspectives
\Rightarrow from square $\left(2 \times 2=2^{2}\right)$ to octagon $\left(4 \times 2=2^{3}\right)$
(4) Octagons for Composed Operator Duality
- Buridan Octagon in Modal Syllogistics
- Lenzen Octagon in Modal Logic S4.2
(5) Octagons for Generalized Post Duality
- Keynes-Johnson Octagon in Syllogistics with subject negation
- Moretti Octagon in Propositional Logic

Octagons for Composed Operator Duality

- Suppose that φ is the result of applying an n-ary composed operator $O_{1} \circ O_{2}$ to n propositions $\alpha_{1}, \ldots, \alpha_{n}$,
- i.e. $\varphi \equiv\left(O_{1} \circ O_{2}\right)\left(\alpha_{1}, \ldots, \alpha_{n}\right)=O_{1}\left(O_{2}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$.
- add an extra negation position, viz. intermediate negation.
- The proposition $O_{1}\left(O_{2}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$ has a unique
- external negation (ENEG):
- intermediate negation (MNEG):
- internal negation (INEG):

$$
\begin{array}{r}
\neg O_{1}\left(\begin{array}{cc}
O_{2}\left(\alpha_{1}, \ldots,\right. & \left.\left.\alpha_{n}\right)\right), \\
O_{1}\left(\neg O_{2}(\right. & \alpha_{1}, \ldots, \\
O_{n}(& O_{2}\left(\neg \alpha_{1}, \ldots,\right. \\
& , \ldots
\end{array}\right),
\end{array}
$$

- With 3 independent negation positions, $O_{1} \circ O_{2}$ gives rise to $2^{3}=8$ propositions in total, yielding a much richer duality behavior:
- ENEG, MNEG, and INEG

- ENEG o mNeg o ineg (Emi).

Buridan Octagon (Modal Syllogistics)

ID

Buridan Octagon (Modal Syllogistics)

Lenzen Octagon (Modal Logic S4.2)

(5) Octagons for Generalized Post Duality

- Keynes-Johnson Octagon in Syllogistics with subject negation
- Moretti Octagon in Propositional Logic
- Classical duality applies internal negation to all argument positions, i.e. internal negation of n-ary $O\left(\alpha_{1}, \ldots, \alpha_{n}\right) \equiv O\left(\neg \alpha_{1}, \ldots, \neg \alpha_{n}\right)$
- Drop this assumption, and let internal negation apply to each argument position independently: with a binary operator O, we thus have 3 independent negation positions in total.
- The proposition $O\left(\alpha_{1}, \alpha_{2}\right)$ has a unique:
- external negation (ENEG):

$$
\neg O\left(\alpha_{1}, \quad \alpha_{2}\right)
$$

- first internal negation (INEG1): $\quad O\left(\neg \alpha_{1}, \alpha_{2}\right)$,
- second internal negation (INEG2): $\quad O\left(\alpha_{1}, \neg \alpha_{2}\right)$.
- With 3 independent negation positions, $O_{1} \circ O_{2}$ gives rise to $2^{3}=8$ propositions in total, yielding a much richer duality behavior:
- ENEG, INEG1, and INEG2,
- ENEG ○ INEG1 (Ei1), ENEG ○ INEG2 (EI2), and INEG1 ○ INEG2 (I12),
- ENEG ○ INEG1 ○ INEG2 (EI12).

Keynes-Johnson Octagon (Syllogistics with subject negation) 33

Keynes-Johnson Octagon (Syllogistics with subject negation) 34

CD
$\|_{\text {ENEG }}^{C D}$

Keynes-Johnson Octagon (Syllogistics with subject negation) 35

Keynes-Johnson Octagon (Syllogistics with subject negation) 36

Keynes-Johnson Octagon (Syllogistics with subject negation) 37

Moretti Octagon (in Propositional Logic)

Structure of the talk

(1) Introduction

(2) Aristotelian and Duality Squares
(3) (In)dependence of Aristotelian and Duality Diagrams
(4) Octagons for Composed Operator Duality

- Buridan Octagon in Modal Syllogistics
- Lenzen Octagon in Modal Logic S4.2
(5) Octagons for Generalized Post Duality
- Keynes-Johnson Octagon in Syllogistics with subject negation
- Moretti Octagon in Propositional Logic
(6) Conclusion

Aristotelian and Duality Relations - L. Demey \& H. Smessaert

Square $=$ classical duality

Buridan octagon $=$ Composed Operator duality

Keynes-Johnson octagon $=$ Generalised Post duality

Aristotelian and Duality Relations - L. Demey \& H. Smessaert

Square $=$ classical duality

Lenzen octagon $=$ Composed Operator duality

Moretti octagon $=$ Generalised Post duality

Thank you!

More info: www.logicalgeometry.org

