KU LEUVEN

Logical Geometries and Information in the Square of Oppositions

- The Aristotelian Square of Oppositions and its Extensions
- The Success of the Aristotelian Square
- 2 Opposition, Implication and Information
 - The Opposition and Implication Geometries
 - Information as Range
- Informativity of the Aristotelian Geometry and its Diagrams
 Informativity of the Aristotelian Geometry
 Informativity of the Aristotelian Diagrams

4 Conclusion

This talk is based on joint work with Hans Smessaert.

Information in the Square – Lorenz Demey

KU LE

- The Aristotelian Square of Oppositions and its Extensions
- The Success of the Aristotelian Square
- Opposition, Implication and Information
 The Opposition and Implication Geometries
 Information as Bange
 - Information as Range

Informativity of the Aristotelian Geometry and its Diagrams
 Informativity of the Aristotelian Geometry
 Informativity of the Aristotelian Diagrams

Conclusion

KU LE

- terminology: the Aristotelian square (historically inaccurate)
- visual representation of a fragment of the Aristotelian geometry
- geometry = formulas and relations between them

(diagrams visualize modulo logical equivalence)

- the four Aristotelian relations (relative to a logical system S):
 - φ and ψ are said to be

(assumption: S has classical negation, conjunction, implication)

Information in the Square - Lorenz Demey

KU LEU

Example

Our running example today: the modal logic S5.

KU LEUVEN

Information in the Square - Lorenz Demey

Generalizations of the Aristotelian Square

- throughout history: several proposals to extend the square
 - more formulas, more relations
 - larger and more complex diagrams
 - hexagons, octagons, cubes and other three-dimensional figures...

Information in the Square – Lorenz Demey

- the square and its extensions: hexagon, octagon, RDH, ...
- the extensions are very interesting
 - well-motivated (singular propositions, Boolean closure)
 - throughout history (Sherwood hexagon, Buridan octagon)
 - interrelations (e.g. 3 squares inside JSB hexagon)

• yet:

- (nearly) all logicians know about the square
- (nearly) no logicians know about its extensions
- our explanation: "the Aristotelian square is very informative"
 - this claim sounds intuitive, but is also vague
 - provide precise and well-motivated framework

KU LEL

- The Aristotelian Square of Oppositions and its Extensions
- The Success of the Aristotelian Square
- Opposition, Implication and Information
 The Opposition and Implication Geometries
 Information as Range
- Informativity of the Aristotelian Geometry and its Diagrams
 Informativity of the Aristotelian Geometry
 Informativity of the Aristotelian Diagrams

Conclusion

KULE

ullet recall the Aristotelian geometry: arphi and ψ are said to be

- problems with the Aristotelian geometry:
 - not mutually exclusive: e.g. \perp and p are contrary and subaltern (problem disappears if we restrict to contingent formulas)
 - not exhaustive: e.g. p and ◊p ∧ ◊¬p are in no Arist. relation at all (if φ is contingent, then φ is in no Arist. relation to itself)
 - conceptual confusion: true/false together vs truth propagation
 - 'together' ~> symmetrical relations (undirected)
 - 'propagation' ~> asymmetrical relations (directed)

Information in the Square - Lorenz Demey

KU LEU

- the opposition geometry: φ and ψ are contradictory iff $S \models \neg(\varphi \land \psi)$ and $S \models \neg(\neg \varphi \land \neg \psi)$ contrary iff $S \models \neg(\varphi \land \psi)$ and $S \not\models \neg(\neg \varphi \land \neg \psi)$ subcontrary iff $S \not\models \neg(\varphi \land \psi)$ and $S \models \neg(\neg \varphi \land \neg \psi)$ non-contradictory iff $S \not\models \neg(\varphi \land \psi)$ and $S \models \neg(\neg \varphi \land \neg \psi)$
- the implication geometry: φ and ψ are in *bi-implication* iff $S \models \varphi \rightarrow \psi$ and $S \models \psi \rightarrow \varphi$ *left-implication* iff $S \models \varphi \rightarrow \psi$ and $S \not\models \psi \rightarrow \varphi$ *right-implication* iff $S \not\models \varphi \rightarrow \psi$ and $S \models \psi \rightarrow \varphi$ *non-implication* iff $S \not\models \varphi \rightarrow \psi$ and $S \models \psi \rightarrow \varphi$
- opposition relations: being true/false together
- implication relations: truth propagation

 $\varphi \wedge \psi$ and $\neg \varphi \wedge \neg \psi$ $\varphi \wedge \neg \psi$ and $\neg \varphi \wedge \psi$

KU LEUV

- \bullet OG and IG jointly solve the problems of the Aristotelian geometry:
 - each pair of formulas stands in exactly one opposition relation
 - each pair of formulas stands in exactly one implication relation
 - no more conceptual confusion
- conceptual independence, yet clear relationship (symmetry breaking):
 - $\begin{array}{rcl} \mathsf{CD}(\varphi,\psi) & \Leftrightarrow & \mathsf{BI}(\psi,\neg\varphi) \\ \mathsf{C}(\varphi,\psi) & \Leftrightarrow & \mathsf{LI}(\psi,\neg\varphi) \\ \mathsf{SC}(\varphi,\psi) & \Leftrightarrow & \mathsf{RI}(\psi,\neg\varphi) \end{array}$
 - $\mathsf{NCD}(\varphi, \psi) \iff \mathsf{NI}(\psi, \neg \varphi)$
- Correia: two philosophical traditions
 - square as a theory of negation
 - square as a theory of consequence

commentaries on *De Interpretatione* commentaries on *Prior Analytics*

KU LEU

- connection with binary connectives:
 - for $R \in \mathsf{OG}$ and $S \in \mathsf{IG}$, we define a binary connective $\circ^{(R,S)}$
 - theorem: if $R(\varphi,\psi)$ and $S(\varphi,\psi)$, then $\models \varphi \circ^{(R,S)} \psi$

Information in the Square - Lorenz Demey

Information as Range

- informativity of a relation holding between φ and ψ is inversely correlated with the number of states (models) it is compatible with
- informativity of the opposition and implication relations:

Information in the Square – Lorenz Demey

KU LEUVEN

- close match between formal account and intuitions:
 - e.g. CD is more informative than C
 - if φ is known,
 - \blacktriangleright announcing $\mathsf{CD}(\varphi,\psi)$ uniquely determines ψ
 - \blacktriangleright announcing $\mathsf{C}(\varphi,\psi)$ doesn't uniquely determine ψ
- combinatorial results on finite Boolean algebras
 - Boolean algebra \mathbb{B}_n with 2^n formulas, formula of level *i*:
 - 1 contradictory
 - ▶ $2^{n-i} 1$ contraries and $2^i 1$ subcontraries
 - $(2^{n-i}-1)(2^i-1)$ non-contradictories
 - $1 < 2^{n-i} 1, 2^i 1 < (2^{n-i} 1)(2^i 1)$ iff 1 < i < n 1
- coherent with earlier results:
 - opposition and implication yield isomorphic informativity lattices
 - $\mathsf{CD}(\varphi,\psi) \Leftrightarrow \mathsf{BI}(\psi,\neg\varphi),\ldots$

KU LEL

- The Aristotelian Square of Oppositions and its Extensions
- The Success of the Aristotelian Square
- Opposition, Implication and Information
 The Opposition and Implication Geometries
 - Information as Range
- Informativity of the Aristotelian Geometry and its Diagrams
 Informativity of the Aristotelian Geometry
 Informativity of the Aristotelian Diagrams

Conclusion

KULE

- why is the Aristotelian square special?
- our answer: because it is very informative
 - it is a very informative *diagram*
 - in a very informative geometry

KU LEUVEN

- Aristotelian geometry: hybrid between
 - opposition geometry: contradiction, contrariety, subcontrariety
 - implication geometry: left-implication (subalternation)
- these relations are highly informative (in their geometries)

Information in the Square – Lorenz Demey

KU LEU

- given any two formulas:
 - ullet they stand in exactly one opposition relation R
 - ullet they stand in exactly one implication relation S
- $\bullet\,$ if R is strictly more informative than S, then R is Aristotelian
- ullet if S is strictly more informative than R_i then S is Aristotelian
 - example 1: $\Box p$ and $\Diamond p$: non-contradiction and left-implication
 - example 2: $\Box p$ and $\Box \neg p$: **contrariety** and non-implication
 - example 3: $\Diamond p$ and $\Box \neg p$: **contradiction** and non-implication

Information in the Square – Lorenz Demey

- given any two formulas:
 - ullet they stand in exactly one opposition relation R
 - ullet they stand in exactly one implication relation S
- what if neither relation is strictly more informative than the other?
- theorem: this can only occur in one case: NCD + NI (unconnectedness)

- Aristotelian gap = information gap
 - no Aristotelian relation at all (non-exhaustiveness of AG)
 - combination of the two least informative relations

Information in the Square - Lorenz Demey

KU LEU

- unconnectedness in the Béziau octagon
- ullet e.g. p and $\Diamond p \land \Diamond \neg p$ are unconnected

Information in the Square – Lorenz Demey

KU LEUVEN

- The Aristotelian Square of Oppositions and its Extensions
- The Success of the Aristotelian Square
- Opposition, Implication and Information
 The Opposition and Implication Geometries
 Information as Range
- Informativity of the Aristotelian Geometry and its Diagrams
 Informativity of the Aristotelian Geometry
 Informativity of the Aristotelian Diagrams

Conclusion

Information in the Square - Lorenz Demey

KULE

Conclusion

- logical geometry: Aristotelian square of oppositions and its extensions
- the Aristotelian square is highly informative:
 - Aristotelian geometry is hybrid: maximize informativity ⇒ applies to all Aristotelian diagrams
 - avoid unconnectedness: *minimize* uninformativity
 ⇒ some Aristotelian diagrams succeed better than others
 - classical square, JSB hexagon, SC hexagon don't have unconnectedness
 - Béziau octagon (and many other diagrams) do have unconnectedness
- Q: what about the JSB hexagon, SC hexagon, etc.?
 - equally informative as the square
 - yet less widely known...
- A: requires yet another geometry: duality

KU LEL

Thank you!

More info: www.logicalgeometry.org

KU LEUVEN

Information in the Square - Lorenz Demey