KU LEUVEN

Logical Geometries and Information in the Square of Oppositions

Lorenz Demey

Structure of the talk

(1) Logical Geometry

- The Aristotelian Square of Oppositions and its Extensions
- The Success of the Aristotelian Square
(2) Opposition, Implication and Information
- The Opposition and Implication Geometries
- Information as Range
(3) Informativity of the Aristotelian Geometry and its Diagrams
- Informativity of the Aristotelian Geometry
- Informativity of the Aristotelian Diagrams
(4) Conclusion

This talk is based on joint work with Hans Smessaert.

Structure of the talk

(1) Logical Geometry

- The Aristotelian Square of Oppositions and its Extensions
- The Success of the Aristotelian Square
(2) Opposition, Implication and Information
- The Opposition and Implication Geometries
- Information as Range
(3) Informativity of the Aristotelian Geometry and its Diagrams
- Informativity of the Aristotelian Geometry
- Informativity of the Aristotelian Diagrams

The Square of Oppositions

- terminology: the Aristotelian square (historically inaccurate)
- visual representation of a fragment of the Aristotelian geometry
- geometry $=$ formulas and relations between them (diagrams visualize modulo logical equivalence)
- the four Aristotelian relations (relative to a logical system S):
φ and ψ are said to be

contradictory	iff	$\mathrm{S} \mid=\neg(\varphi \wedge \psi)$	and	$\mathrm{S} \equiv \neg(\neg \varphi \wedge \neg \psi)$
contrary	iff	$\mathrm{S} \mid=\neg(\varphi \wedge \psi)$	and	$\mathrm{S} \nmid \vDash \neg(\neg \varphi \wedge \neg \psi)$
subcontrary	iff	$\mathrm{S} \mid \neq \neg(\varphi \wedge \psi)$	and	$\mathrm{S} \equiv \neg(\neg \varphi \wedge \neg \psi)$
in subalternation	iff	$\mathrm{S} \mid=\varphi \rightarrow \psi$	and	$\mathrm{S} \not \models \psi \rightarrow \varphi$

(assumption: S has classical negation, conjunction, implication)

Our running example today: the modal logic S 5 .

Generalizations of the Aristotelian Square

- throughout history: several proposals to extend the square
- more formulas, more relations
- larger and more complex diagrams
- hexagons, octagons, cubes and other three-dimensional figures...

The Success of the Aristotelian Square

- the square and its extensions: hexagon, octagon, RDH, ...
- the extensions are very interesting
- well-motivated (singular propositions, Boolean closure)
- throughout history (Sherwood hexagon, Buridan octagon)
- interrelations (e.g. 3 squares inside JSB hexagon)
- yet:
- (nearly) all logicians know about the square
- (nearly) no logicians know about its extensions
- our explanation: "the Aristotelian square is very informative"
- this claim sounds intuitive, but is also vague
- provide precise and well-motivated framework

Structure of the talk

(1) Logical Geometry

- The Aristotelian Square of Oppositions and its Extensions
- The Success of the Aristotelian Square
(2) Opposition, Implication and Information
- The Opposition and Implication Geometries
- Information as Range
(3) Informativity of the Aristotelian Geometry and its Diagrams
- Informativity of the Aristotelian Geometry
- Informativity of the Aristotelian Diagrams

Problems with the Aristotelian Geometry

- recall the Aristotelian geometry: φ and ψ are said to be

- problems with the Aristotelian geometry:
- not mutually exclusive: e.g. \perp and p are contrary and subaltern (problem disappears if we restrict to contingent formulas)
- not exhaustive: e.g. p and $\Delta p \wedge \diamond \neg p$ are in no Arist. relation at all (if φ is contingent, then φ is in no Arist. relation to itself)
- conceptual confusion: true/false together vs truth propagation
- 'together' \rightsquigarrow symmetrical relations (undirected)
- 'propagation' \rightsquigarrow asymmetrical relations (directed)
- the opposition geometry: φ and ψ are

contradictory	iff	$S \neq \neg(\varphi \wedge \psi)$	and	$S \neq \neg(\neg \varphi \wedge \neg \psi)$
contrary	iff	$S \neq \neg(\varphi \wedge \psi)$	and	$S \nLeftarrow \neg(\neg \varphi \wedge \neg \psi)$
subcontrary	iff	$S \nLeftarrow \neg(\varphi \wedge \psi)$	and	$S \neq \neg(\neg \varphi \wedge \neg \psi)$
non-contradictory	iff	$S \nLeftarrow \neg(\varphi \wedge \psi)$	and	$S \nLeftarrow \neg(\neg \varphi \wedge \neg \psi)$

- the implication geometry: φ and ψ are in
bi-implication
iff $\quad \mathrm{S} \models \varphi \rightarrow \psi$
and
$\mathrm{S} \models \psi \rightarrow \varphi$
left-implication
iff $\quad \mathrm{S} \vDash \varphi \rightarrow \psi$
and $\mathrm{S} \not \vDash \psi \rightarrow \varphi$
right-implication
non-implication
iff
iff $\mathrm{S} \not \vDash \varphi \rightarrow \psi \quad$ and $\quad \mathrm{S} \not \vDash \psi \rightarrow \varphi$
- opposition relations: being true/false together
$\varphi \wedge \psi$ and $\neg \varphi \wedge \neg \psi$
- implication relations: truth propagation
$\varphi \wedge \neg \psi$ and $\neg \varphi \wedge \psi$
- OG and IG jointly solve the problems of the Aristotelian geometry:
- each pair of formulas stands in exactly one opposition relation
- each pair of formulas stands in exactly one implication relation
- no more conceptual confusion
- conceptual independence, yet clear relationship (symmetry breaking):

$\mathrm{CD}(\varphi, \psi)$	\Leftrightarrow	$\mathrm{BI}(\psi, \neg \varphi)$
$\mathrm{C}(\varphi, \psi)$	\Leftrightarrow	$\mathrm{LI}(\psi, \neg \varphi)$
$\mathrm{SC}(\varphi, \psi)$	\Leftrightarrow	$\operatorname{RI}(\psi, \neg \varphi)$
$\mathrm{NCD}(\varphi, \psi)$	\Leftrightarrow	$\mathrm{NI}(\psi, \neg \varphi)$

- Correia: two philosophical traditions
- square as a theory of negation
- square as a theory of consequence
commentaries on De Interpretatione commentaries on Prior Analytics
- connection with binary connectives:
- for $R \in \mathrm{OG}$ and $S \in \mathrm{IG}$, we define a binary connective $\circ^{(R, S)}$
- theorem: if $R(\varphi, \psi)$ and $S(\varphi, \psi)$, then $\models \varphi \circ^{(R, S)} \psi$
- informativity of a relation holding between φ and ψ is inversely correlated with the number of states (models) it is compatible with
- informativity of the opposition and implication relations:

- close match between formal account and intuitions:
- e.g. CD is more informative than C
- if φ is known,
- announcing $\operatorname{CD}(\varphi, \psi)$ uniquely determines ψ
- announcing $\mathrm{C}(\varphi, \psi)$ doesn't uniquely determine ψ
- combinatorial results on finite Boolean algebras
- Boolean algebra \mathbb{B}_{n} with 2^{n} formulas, formula of level i :
- 1 contradictory
- $2^{n-i}-1$ contraries and $2^{i}-1$ subcontraries
- $\left(2^{n-i}-1\right)\left(2^{i}-1\right)$ non-contradictories
- $1<2^{n-i}-1,2^{i}-1<\left(2^{n-i}-1\right)\left(2^{i}-1\right)$ iff $1<i<n-1$
- coherent with earlier results:
- opposition and implication yield isomorphic informativity lattices
- $\mathrm{CD}(\varphi, \psi) \Leftrightarrow \mathrm{BI}(\psi, \neg \varphi), \ldots$

Structure of the talk

(1) Logical Geometry

- The Aristotelian Square of Oppositions and its Extensions
- The Success of the Aristotelian Square
(2) Opposition, Implication and Information
- The Opposition and Implication Geometries
- Information as Range
(3) Informativity of the Aristotelian Geometry and its Diagrams
- Informativity of the Aristotelian Geometry
- Informativity of the Aristotelian Diagrams
- why is the Aristotelian square special?
- our answer: because it is very informative
- it is a very informative diagram
- in a very informative geometry

Informativity of the Aristotelian Geometry, I

- Aristotelian geometry: hybrid between
- opposition geometry: contradiction, contrariety, subcontrariety
- implication geometry: left-implication (subalternation)
- these relations are highly informative (in their geometries)

Informativity of the Aristotelian Geometry, II

- given any two formulas:
- they stand in exactly one opposition relation R
- they stand in exactly one implication relation S
- if R is strictly more informative than S, then R is Aristotelian
- if S is strictly more informative than R, then S is Aristotelian
- example 1: $\square p$ and $\diamond p$: non-contradiction and left-implication
- example 2: $\square p$ and $\square \neg p$: contrariety and non-implication
- example 3: Δp and $\square \neg p$: contradiction and non-implication

- given any two formulas:
- they stand in exactly one opposition relation R
- they stand in exactly one implication relation S
- what if neither relation is strictly more informative than the other?
- theorem: this can only occur in one case: NCD + NI (unconnectedness)

- Aristotelian gap $=$ information gap
- no Aristotelian relation at all (non-exhaustiveness of AG)
- combination of the two least informative relations
- no unconnectedness in the classical Aristotelian square

- no unconnectedness in the Jacoby-Sesmat-Blanché hexagon

Information in the Square - Lorenz Demey

- unconnectedness in the Béziau octagon
- e.g. p and $\Delta p \wedge \diamond \neg p$ are unconnected

Structure of the talk

(1) Logical Geometry

- The Aristotelian Square of Oppositions and its Extensions
- The Success of the Aristotelian Square
(2) Opposition, Implication and Information
- The Opposition and Implication Geometries
- Information as Range
(3) Informativity of the Aristotelian Geometry and its Diagrams
- Informativity of the Aristotelian Geometry
- Informativity of the Aristotelian Diagrams
(4) Conclusion

Information in the Square - Lorenz Demey

- logical geometry: Aristotelian square of oppositions and its extensions
- the Aristotelian square is highly informative:
- Aristotelian geometry is hybrid: maximize informativity \Rightarrow applies to all Aristotelian diagrams
- avoid unconnectedness: minimize uninformativity \Rightarrow some Aristotelian diagrams succeed better than others
- classical square, JSB hexagon, SC hexagon don't have unconnectedness
- Béziau octagon (and many other diagrams) do have unconnectedness
- Q: what about the JSB hexagon, SC hexagon, etc.?
- equally informative as the square
- yet less widely known. .
- A: requires yet another geometry: duality

Thank you!

More info: www.logicalgeometry.org

