KU LEUVEN

Introduction to Logical Geometry

1. Basic Concepts and Bitstring Semantics

Lorenz Demey \& Hans Smessaert

ESSLLI 2018, Sofia

Practicalities

- lecturers:
- Lorenz Demey
- primary background in logic and philosophy
- Center for Logic and Philosophy of Science, KU Leuven
- http://www.lorenzdemey.eu
- Hans Smessaert
- primary background in linguistics
- Research Group Formal and Computational Linguistics, KU Leuven
- http://wwwling.arts.kuleuven.be/ComForT/hsmessaert/
- course website:
- http://logicalgeometry.org/tutorial-esslli2018.htm
- course slides
- background readings
- what's your academic background?
- philosophy
- logic
- linguistics
- mathematics
- computer science

Motivating examples

- logical geometry \sim the systematic study of Aristotelian diagrams
- what are Aristotelian diagrams?
- later: precise definition
- now: some motivating examples
- some general trends to pay attention to:
- long history, but still used today
- applications in logic and philosophy, but also in many other disciplines
- not just for teaching purposes, but also in research contexts

Square of opposition

- oldest and most well-known example of an Aristotelian diagram
- the square of opposition for the categorical statements from syllogistics
- relations: Aristotle (4th century BCE)
- diagram: Apuleius of Madaura (2nd century CE),

Boethius (5th century CE)

- epic poem: Der Wälsche Gast
- visual representation of the seven liberal arts

Introduction to Logical Geometry - Part 1

Peter Abelard (1079 - 1142)

- square for the quantifiers from the categorical statements (all, some, no)
- also a square for the dual quantifiers (both, either, neither)

'uterque eorum currit'
contrariae
'neuter currit'

KULEUVEN
Introduction to Logical Geometry - Part 1

Peter of Spain (13th century)

- squares for the quantifiers and the modalities
- within each vertex: duality behavior
- every man runs
- no man does not run
- not some man does not run

Non possibile est non esse	CONTRARIE	Non possibile est esse
	Tertius est quarto	
Non contingens est non esse	semper contrarius ordo	Non contingens est esse
Impossibile est non esse		Impossibile est esse
Necesse est esse		Necesse est non esse

Introduction to Logical Geometry - Part 1

- modal syllogistics: propositions with quantifiers and modalities
- 'figura completa', but also 'figura incompleta'

Sic igitur per istas propositiones habetur una figura completa habens propositiones contrarias, contradictorias, subalternas et subcontrarias sic dispositas:

subcontrarize
contrariantur, quia possunt esse simul falsae. Et ita habetur tertia figura, sed incompleta, talis:

John Buridan (1300-1358)

- integrates several squares into one 'magna figura'
- for modal syllogistics, but also for other types of propositions

Introduction to Logical Geometry - Part 1

Nicole Oresme (1323-1382)

- (proto-scientific) cosmology: Livre du Ciel et du Monde
- an 'extended' square: add the conjunction of the two lower corners
always possible always possible

the intermediate

Jacques Lefèvre d'Étaples (1455-1536)

- analogy:
- a square for propositions // a square for properties
- 'cannot be true together' / / 'cannot be instantiated together'

Introduction to Logical Geometry - Part 1

- squares for quantifiers, propositional connectives, modalities, temporal and spatial adverbs

TABULA PRIMA.
Exhibens oppofitionem propofitionum fimplicium.

TABULA TERTIA
Exhibens oppofitionem propofitionum copulativarum, \& disjunctivarum.

Richard Whately (1787-1863)

- "In the nineteenth century, the apparently most widely used textbook in Britain and America" (Parsons, 2017)
- usual square for the categorical statements
- three types of matter (connection between subject and predicate): [n]ecessary, [i]mpossible and [c]ontingent

- a square of opposition in Begriffschrift notation
- note the mistake: 'conträr' \rightsquigarrow 'subconträr'

- octagon for the categorical statements with subject negation

20th-century/contemporary philosophers and logicians

- Ruth Barcan Marcus
- Arthur Prior
- Hans Reichenbach
- Richard Hare
- H. L. A. Hart (cf. figure)
- Roderick Chisholm
- Ernest Sosa

Applications beyond logic and philosophy

- linguistics
- semantics (generalized quantifiers)
- pragmatics (implicatures)
- typology (lexicalization)
(Dag Westerståhl) (Laurence Horn) (Debra Ziegeler)

On the empty O-corner of the Aristotelian Square:
A view from Singapore English
Debra Ziegeler*

Applications beyond logic and philosophy

- cognitive science
- psychology of reasoning
- emotions research
- neuroscience
(Stephen Newstead, Richard Griggs)
(Olivier Massin)
(Stephen Newstead, Richard Griggs)
(Olivier Massin) (Camillo Porcaro et al.)

Drawing Inferences from Quantified Statements: A Study of the Square of Opposition

Universal vs. particular reasoning: a study with neuroimaging techniques

Applications beyond logic and philosophy

- computer science (knowledge representation)
- formal concept analysis
- rough set theory
- formal argumentation theory
(Didier Dubois, Henri Prade) (Yiyu Yao, Davide Ciucci) (Leila Amgoud)

The Cube of Opposition -
A Structure underlying many Knowledge Representation Formalisms

- Aristotelian diagrams have been used
- for a very long time (including today)
- in a wide variety of disciplines (not just logic and philosophy)
- Aristotelian diagrams constitute a language for a broad (transdisciplinary and transhistorical) community of researchers who deal with logical reasoning
- logical geometry \sim the linguistics that systematically studies the language of Aristotelian diagrams
- two fundamental aspects of any language:
- syntax: form, representation
- semantics: meaning, what is represented
\rightsquigarrow 'geometry' \rightsquigarrow 'logical'
- perspective shift:
- in a typical application:

Aristotelian diagrams are used ($=$ tool)
to analyze some linguistic, logical, conceptual phenomenon (= object)

- in logical geometry:

Aristotelian diagrams are themselves the primary objects of study, analyzed using a variety of tools (bitstring analysis, group theory, etc.)

- this has led to an elaborate (and growing) elegant theory (regardless of the multitude of applications)
- double motivation for logical geometry:
- Aristotelian diagrams as objects of independent interest
- Aristotelian diagrams as a widely-used language
- other types of logic diagrams:
- Hasse diagrams
- Euler/Venn diagrams
- duality diagrams
- since the 1990 s: diagrammatic reasoning
- two courses at ESSLLI 2017:
- Caught in the Spiders' Diagrammatic Reasoning Web - The Euler/Spider Diagram Family of Formal Reasoning Systems
- Picturing Quantum Processes

We provide a self-contained introduction to quantum theory ... This course is unique in our use of a diagrammatic language throughout. Far from simple visual aids, the diagrams we use are mathematical objects in their own right

1．Basic Concepts and Bitstring Semantics
2．Abstract－Logical Properties of Aristotelian Diagrams，Part I㕷 Aristotelian，Opposition，Implication and Duality Relations

3．Visual－Geometric Properties of Aristotelian Diagrams喂 Informational Equivalence，Symmetry and Distance

4．Abstract－Logical Properties of Aristotelian Diagrams，Part II䰹 Boolean Structure and Logic－Sensitivity

5．Case Studies and Philosophical Outlook

1．Basic Concepts and Bitstring Semantics

2．Abstract－Logical Properties of Aristotelian Diagrams，Part I㥳 Aristotelian，Opposition，Implication and Duality Relations

3．Visual－Geometric Properties of Aristotelian Diagrams喀 Informational Equivalence，Symmetry and Distance

4．Abstract－Logical Properties of Aristotelian Diagrams，Part II榢 Boolean Structure and Logic－Sensitivity

5．Case Studies and Philosophical Outlook

- two propositions are said to be
contradictory (CD) iff they cannot be true together and they cannot be false together
contrary (C) iff they cannot be true together but they can be false together
subcontrary (SC) iff they can be true together but they cannot be false together
in subalternation (SA) iff the first proposition entails the second but the second doesn't entail the first

Introduction to Logical Geometry - Part 1

- let S be a logical system with
- the usual Boolean connectives $(\wedge, \vee, \neg, \rightarrow)$
- a model-theoretic semantics $(\mid=)$
- two formulas $\varphi, \psi \in \mathcal{L}_{\mathrm{S}}$ are said to be

S-contradictory $\left(C D_{\mathrm{S}}\right)$	iff	$\models_{\mathrm{S}} \neg(\varphi \wedge \psi)$	and	$\models_{\mathrm{S}} \neg(\neg \varphi \wedge \neg \psi)$
S-contrary $\left(C_{\mathrm{S}}\right)$	iff	$\models_{\mathrm{S}} \neg(\varphi \wedge \psi)$	and	$\not \models_{\mathrm{S}} \neg(\neg \varphi \wedge \neg \psi)$
S-subcontrary $\left(S C_{\mathrm{S}}\right)$	iff	$\models_{\mathrm{S}} \neg(\varphi \wedge \psi)$	and	$\models_{\mathrm{S}} \neg(\neg \varphi \wedge \neg \psi)$
in S-subalternation $\left(S A_{\mathrm{S}}\right)$	iff	$\models_{\mathrm{S}} \varphi \rightarrow \psi$	and	$\not \models_{\mathrm{S}} \psi \rightarrow \varphi$

- the Aristotelian geometry for $\mathrm{S}: \mathcal{A \mathcal { G } _ { \mathrm { S } }}:=\left\{C D_{\mathrm{S}}, C_{\mathrm{S}}, S C_{\mathrm{S}}, S A_{\mathrm{S}}\right\}$
- the Aristotelian relations are defined up to logical equivalence:
- suppose that $\varphi \equiv \mathrm{s} \varphi^{\prime}$ and $\psi \equiv \mathrm{s} \psi^{\prime}$
- then for all $R \in \mathcal{A G}_{\mathrm{S}}: R_{\mathrm{S}}(\varphi, \psi) \Leftrightarrow R_{\mathrm{S}}\left(\varphi^{\prime}, \psi^{\prime}\right)$
- let $\mathbb{B}=\langle B, \wedge, \vee, \neg, \top, \perp\rangle$ be an arbitrary Boolean algebra
- two elements $x, y \in B$ are said to be

\mathbb{B}-contradictory $\left(C D_{\mathbb{B}}\right)$	iff	$x \wedge y=\perp$	and
\mathbb{B}-contrary $\left(C_{\mathbb{B}}\right)$	iff	$x \wedge y=\perp$	
\mathbb{B}-subcontrary $\left(S C_{\mathbb{B}}\right)$	iff	$x \wedge y \neq \perp$	and
in \mathbb{B}-subalternation $\left(S A_{\mathbb{B}}\right)$	iff	$\neg x \vee y=\top$	
in	$x \vee y=\top$		
and	$x \vee \neg y \neq \top$		

- the Aristotelian geometry for $\mathbb{B}: \mathcal{A} \mathcal{G}_{\mathbb{B}}:=\left\{C D_{\mathbb{B}}, C_{\mathbb{B}}, S C_{\mathbb{B}}, S A_{\mathbb{B}}\right\}$
- thanks to this abstract characterisation, Aristotelian relations can be defined between formulas/statements and between sets/concepts
- cf. Lefèvre d'Étaples's 'analogia' between two squares of oppositions
- Keynes, 1906: "These seven possible relations between propositions (taken in pairs) will be found to be precisely analogous to the seven possible relations between classes (taken in pairs)"
- first concrete instance of the algebraic characterisation: Aristotelian relations in a Lindenbaum- Tarski algebra
- S-equivalence classes of formulas: $[\varphi]_{\mathrm{S}}:=\left\{\psi \in \mathcal{L}_{\mathrm{S}} \mid \varphi \equiv_{\mathrm{S}} \psi\right\}$
- let $\mathbb{B}(S)$ be the Lindenbaum-Tarski algebra of the logical system S
- two equivalence classes $[\varphi]_{\mathrm{S}},[\psi]_{\mathrm{S}}$ are said to be

$\mathbb{B}(\mathrm{S})$-contradictory	iff	$[\varphi]_{\mathrm{S}} \wedge[\psi]_{\mathrm{S}}=\perp$	and	$[\varphi]_{\mathrm{S}} \vee[\psi]_{\mathrm{S}}=T$
$\mathbb{B}(\mathrm{~S})$-contrary	iff	$[\varphi]_{\mathrm{S}} \wedge[\psi]_{\mathrm{S}}=\perp$	and	$[\varphi]_{\mathrm{S}} \vee[\psi]_{\mathrm{S}} \neq T$
$\mathbb{B}(\mathrm{~S})$-subcontrary	iff	$[\varphi]_{\mathrm{S}} \wedge[\psi]_{\mathrm{S}} \neq \perp$	and	$[\varphi]_{\mathrm{S}} \vee[\psi]_{\mathrm{S}}=T$
in $\mathbb{B}(\mathrm{S})$-subalternation	iff	$[\neg \varphi]_{\mathrm{S}} \vee[\psi]_{\mathrm{S}}=T$	and	$[\varphi]_{\mathrm{S}} \vee[\neg \psi]_{\mathrm{S}} \neq T$

- this characterisation essentially corresponds to the model-theoretic one: e.g. φ and ψ are S-contrary iff $[\varphi]_{\mathrm{S}}$ and $[\psi]_{\mathrm{S}}$ are $\mathbb{B}(\mathrm{S})$-contrary
- second concrete instance of the algebraic characterisation: Aristotelian relations in a Boolean algebra of sets
- let $\mathbb{B}=\langle B, \cap, \cup, \backslash, D, \emptyset\rangle$ be a Boolean algebra of sets
- two sets $X, Y \in B$ are said to be

\mathbb{B}-contradictory	iff	$X \cap Y=\emptyset$	and	$X \cup Y=D$
\mathbb{B}-contrary	iff	$X \cap Y=\emptyset$	and	$X \cup Y \neq D$
\mathbb{B}-subcontrary	iff	$X \cap Y \neq \emptyset$	and	$X \cup Y=D$
in \mathbb{B}-subalternation	iff	$(D \backslash X) \cup Y=D$	and	$X \cup(D \backslash Y) \neq D$

- informal characterisation: two propositions φ, ψ are said to be unconnected iff
(i) φ and ψ can be true together and
(ii) φ does not entail ψ and
(iii) ψ does not entail φ and
(iv) φ and ψ can be false together
- together, these four conditions imply that φ and ψ do not stand in any Aristotelian relation:
- condition (i) implies that φ and ψ are neither $C D$ nor C
- condition (ii) implies that there is no $S A$ from φ to ψ
- condition (iii) implies that there is no $S A$ from ψ to φ
- condition (iv) implies that φ and ψ are neither $C D$ nor SC
- model-theoretic characterisation: two formulas φ, ψ are said to be S-unconnected iff
(i) $\neq \mathrm{s} \neg(\varphi \wedge \psi) \quad$ and
(ii) $\neq \mathrm{s} \varphi \rightarrow \psi \quad$ and
(iii) $\neq \mathrm{s} \psi \rightarrow \varphi \quad$ and
(iv) $\not \vDash \mathrm{S} \neg(\neg \varphi \wedge \neg \psi)$
- algebraic characterisation:
two elements $x, y \in B$ are said to be \mathbb{B}-unconnected iff
(i) $\quad x \wedge y \neq \perp$ and
(ii) $x \wedge \neg y \neq \perp$ and
(iii) $\neg x \wedge \quad y \neq \perp$ and
(iv) $\neg x \wedge \neg y \neq \perp$
- first concrete instance: Lindenbaum-Tarski algebra: two equivalence classes $[\varphi]_{\mathrm{S}},[\psi]_{\mathrm{S}}$ are said to be $\mathbb{B}(\mathrm{S})$-unconnected iff
(i) $[\varphi]_{S} \wedge[\psi]_{S} \neq \perp$ and
(ii) $[\varphi]_{S} \wedge[\neg \psi]_{S} \neq \perp$ and
(iii) $[\neg \varphi]_{S} \wedge[\psi]_{S} \neq \perp$ and
(iv) $[\neg \varphi]_{S} \wedge[\neg \psi]_{S} \neq \perp$
- second concrete instance: Boolean algebra of sets: two sets $X, Y \in B$ are said to be \mathbb{B}-unconnected iff
(i)

$$
X \cap Y \neq \emptyset \quad \text { and }
$$

(ii)
(iii)
$X \cap(D \backslash Y) \neq \emptyset \quad$ and
$(D \backslash X) \cap Y \neq \emptyset \quad$ and
(iv) $\quad(D \backslash X) \cap(D \backslash Y) \neq \emptyset$

- bitstrings are finite sequences of bits (0/1), e.g. 10101011
- bitstrings can encode the denotations of formulas or expressions from:
- logical systems: e.g. classical propositional logic, first-order logic, modal logic and public announcement logic
- lexical fields: e.g. comparative quantification, subjective quantification, color terms and set inclusion relations
- each bit provides an answer to a meaningful (binary) question (origin: analysis of generalized quantifiers as sets of sets)
- note:
- we use bitstrings to encode formulas, not relations between formulas
- if a formula φ is encoded by the bitstring b, we write $\beta(\varphi)=b$
- $[b]_{i}$ denotes the $i^{\text {th }}$ bit position of the bitstring b
- each question concerns a component (point/interval) of a scalar structure that creates a partition of logical space

- application to FOL/GQT: is $Q(A, B)$ true if

$$
\begin{array}{ll}
A \subseteq B \text { ? } & \text { yes/no } \\
A \nsubseteq B \text { and } A \cap B \neq \emptyset \text { ? } & \text { yes/no } \\
A \cap B=\emptyset \text { ? } & \text { yes/no }
\end{array}
$$

$$
\beta(\text { all } A \text { are } B) \quad=100=\langle\text { yes, no, no }\rangle
$$

- examples: β (some but not all A are $B)=010=\langle$ no, yes, no \rangle

$$
\beta(\text { not all } A \text { are } B) \quad=011=\langle\text { no, yes, yes }\rangle
$$

Bitstrings in logical geomery: the basics

- application to the modal logic S5: is φ true if
p is true in all possible worlds?
p is true in some but not in all possible worlds?
yes/no
p is true in no possible worlds?

$$
\beta(\diamond p) \quad=110=\langle\text { yes, yes, no }\rangle
$$

- examples: $\beta(\diamond p \wedge \diamond \neg p)=010=\langle$ no, yes, no \rangle

$$
\beta(\diamond \neg p) \quad=011=\langle\text { no, yes, yes }\rangle
$$

Modal Logic	GQT	level $1 / 0$	level $2 / 3$	GQT	Modal Logic
necessary $(\square p)$	all	100	011	not all	not necessary $(\neg \square p)$
contingent $(\square p \wedge \diamond p)$	some but not all	010	101	no or all	not contingent $(\square p \vee \neg \diamond p)$
impossible $(\neg \diamond p)$	no	001	110	some	possible $(\diamond p)$
contradiction $(\square p \wedge \neg \square p)$	some and no	000	111	some or no	tautology $(\square p \vee \neg \square p)$

- second application to the modal logic S5: is φ true if
p is true in all possible worlds? yes/no
p is true in the actual world but not in all possible worlds? yes/no
p is true in some possible worlds but not in the actual world? yes/no
p is true in no possible worlds? yes/no
$\begin{array}{ll} & \beta(\Delta p) \\ \text { - examples: } & =1110=\langle\text { yes, yes, yes, no }\rangle \\ \beta(\diamond p \wedge \diamond \neg p) & =0110=\langle\text { no, yes, yes, no }\rangle \\ \beta(\diamond \neg p) & =0111=\langle\text { no, yes, yes, yes }\rangle\end{array}$

- application to propositional logic: is φ true if

p is true and q is true?	yes/no
p is true and q is false?	yes/no
p is false and q is true?	yes/no
p is false and q is false?	yes $/$ no

- examples: $\begin{array}{ll}\beta(\neg p) & =0011=\langle\text { no, no, yes, yes }\rangle \\ \beta(p \leftrightarrow q) & =1001=\langle\text { yes, no, no, yes }\rangle \\ \beta(p \rightarrow q) & =1011=\langle\text { yes, no, yes, yes }\rangle\end{array}$
from $2^{3}=8$ bitstrings of length 3 to $2^{4}=16$ bitstrings of length 4

Modal Logic S5	Propositional Logic	bitstrings level 1	bitstrings level3	Propositional Logic	Modal Logic S5
$\square \square p$	$p \wedge q$	1000	0111	$\neg(p \wedge q)$	$\neg \square p$
$\neg \square p \wedge p$	$\neg(p \rightarrow q)$	0100	1011	$p \rightarrow q$	$\square p \vee \neg p$
$\diamond p \wedge \neg p$	$\neg(p-q)$	0010	1101	$p \sim q$	$\neg \diamond p \vee p$
$\neg \diamond p$	$\neg(p \vee q)$	0001	1110	$p \vee q$	$\diamond p$

Modal Logic S5	Propositional Logic	bitstrings level 2/0	bitstrings level 2/4	Propositional Logic	Modal Logic S5
p	p	1100	0011	$\neg p$	$\neg p$
$\square p \vee(\diamond p \wedge \neg p)$	q	1010	0101	$\neg q$	$\neg \diamond p \vee(\neg \square p \wedge p)$
$\square p \vee \neg \diamond p$	$p \leftrightarrow q$	1001	0110	$\neg(p \leftrightarrow q)$	$\neg \square p \wedge \diamond p$
$\square p \wedge \neg \square p$	$p \wedge \neg p$	0000	1111	$p \vee \neg p$	$\square p \vee \neg \square p$

- recall: given a logic S , two formulas φ, ψ are

Scontradictory (CDS)		$\neg(\varphi \wedge \psi)$	and)
S-contrary ($C_{\text {S }}$)		$=\mathrm{s} \neg(\varphi \wedge \psi)$	and	$\not \mathcal{K}_{\text {S }} \neg(\neg \varphi \wedge \neg \psi)$
S-subcontrary (SC ${ }_{\text {S }}$)		$\forall_{\mathrm{S}} \neg(\varphi \wedge \psi)$	and	$=_{\mathrm{s}} \neg(\neg \varphi \wedge \neg \psi)$
S-subalternation ($S A_{\text {S }}$)		$\models_{\mathrm{s}} \varphi \rightarrow \psi$	and	$\neq \mathrm{s} \psi \rightarrow \varphi$

- $\{0,1\}^{n}$ is a Boolean algebra, so it can be used to characterise the Aristotelian relations: two bitstrings b_{1}, b_{2} of length n are

n-contradictory $\left(C D_{n}\right)$	iff	$b_{1} \wedge b_{2}=0 \cdots 0$	and	$b_{1} \vee b_{2}=1 \cdots 1$
n-contrary $\left(C_{n}\right)$	iff	$b_{1} \wedge b_{2}=0 \cdots 0$	and	$b_{1} \vee b_{2} \neq 1 \cdots 1$
n-subcontrary $\left(S C_{n}\right)$	iff	$b_{1} \wedge b_{2} \neq 0 \cdots 0$	and	$b_{1} \vee b_{2}=1 \cdots 1$
in n-subalternation $\left(S A_{n}\right)$	iff	$b_{1} \wedge b_{2}=b_{1}$	and	$b_{1} \vee b_{2} \neq b_{1}$

- φ and ψ stand in some Aristotelian relation (defined for S) iff $\beta(\varphi)$ and $\beta(\psi)$ stand in that same relation (defined for bitstrings)
- β maps formulas from S to bitstrings, preserving Aristotelian structure
- let $\mathbb{B}=\langle B, \wedge, \vee, \neg, \top, \perp\rangle$ be an arbitrary Boolean algebra
- consider a non-empty fragment $\mathcal{F} \subseteq B$ such that
- $\top, \perp \notin \mathcal{F}$
- \mathcal{F} is closed under \mathbb{B}-complementation: if $x \in \mathcal{F}$ then $\neg x \in \mathcal{F}$
- an Aristotelian diagram for \mathcal{F} in \mathbb{B} is a diagram that visualizes an edge-labeled graph \mathcal{G}
- the vertices of \mathcal{G} are the elements of \mathcal{F}
- the edges of \mathcal{G} are labeled by the relations of $\mathcal{A G}_{\mathbb{B}}$ between those elements
- if $x, y \in \mathcal{F}$ stand in some Aristotelian relation in \mathbb{B}, then this is visualized according to the code
- contradictory" subcontrary

ーー contrary \rightarrow subalternation

- let S be an appropriate logical system (Boolean $+\models$)
- consider a non-empty fragment $\mathcal{F} \subseteq \mathcal{L}_{\mathrm{S}}$ such that
- every formula $\varphi \in \mathcal{F}$ is S-contingent: $\not \vDash_{\mathrm{S}} \varphi$ and $\not \vDash_{\mathrm{S}} \neg \varphi$
- \mathcal{F} is closed under negation (up to $\equiv \mathrm{s}$):
if $\varphi \in \mathcal{F}$ then $\exists \psi \in \mathcal{F}: \psi \equiv s \neg \varphi$
- the formulas in \mathcal{F} are pairwise non- S -equivalent: if $\varphi, \psi \in \mathcal{F}$ are distinct, then $\varphi \not \equiv \mathrm{s} \psi$
- an Aristotelian diagram for \mathcal{F} in S is a diagram that visualizes an edge-labeled graph \mathcal{G}
- the vertices of \mathcal{G} are the elements of \mathcal{F}
- the edges of \mathcal{G} are labeled by the relations of $\mathcal{A} \mathcal{G}_{S}$ between those elements
- if $\varphi, \psi \in \mathcal{F}$ stand in some Aristotelian relation in S , then this is visualized according to the code
- contradictory" subcontrary

ーー contrary \rightarrow subalternation

100	011	1000	0111
$\square p$	$\square p$	$\square p$	$\square p$

110	001	1100	0011
$\diamond p$	\checkmark op	p	$\neg p$

- $\mathrm{PCD}=$ pair of contradictories
- a PCD is the smallest possible Aristotelian diagram
- no Aristotelian diagrams with a single formula
- because of the requirement that they be closed under negation
- PCDs are the building blocks for all larger Aristotelian diagrams

classical square square of opposition

$$
2 \text { PCDs }
$$

2 subalternations (SA)
1 contrariety (C)
1 subcontrariety (SC)

2 PCDs
degenerate square unconnectedness square X of opposition
$4 \times$ unconnectedness (U)

Jacoby-Sesmat-Blanché hexagon JSB hexagon

$$
3 \text { PCDs }
$$

6 subalternations (SA)
3 contrarieties (C)
3 subcontrarieties (SC)

Sherwood-Czezowski hexagon SC hexagon

$$
3 \text { PCDs }
$$

6 subalternations (SA) 3 contrarieties (C)
3 subcontrarieties (SC)

Béziau octagon
4 PCDs
10 SAs \& 5 Cs \& 5 SCs
$4 \times$ unconnectedness (U)

Buridan octagon

$$
4 \text { PCDs }
$$

10 SAs \& 5 Cs \& 5 SCs
$4 \times$ unconnectedness (U)

- Boolean closure of a fragment \mathcal{F} :
- the smallest Boolean algebra that contains \mathcal{F}
- contains all Boolean combinations of formulas from \mathcal{F}
- notation: $\mathbb{B}(\mathcal{F})$
- contains 2^{n} formulas, for some natural number n
- Boolean closure of an Aristotelian diagram for \mathcal{F} in S :
- Aristotelian diagram for $\mathbb{B}(\mathcal{F})$ in S
- note: Aristotelian diagram, so only S-contingent formulas
- contains $2^{n}-2$ formulas, for some natural number n
- some examples:
- the Boolean closure of a classical square is a JSB hexagon $\Rightarrow 2^{3}-2=6$ contingent Boolean combinations
- the Boolean closure of a degenerate square is a rhombic dodecahedron
- the Boolean closure of an SC hexagon is a rhombic dodecahedron $\Rightarrow 2^{4}-2=14$ contingent Boolean combinations
- the Boolean closure of a classical square is a JSB hexagon

- logical and diagrammatic effectiveness
- linguistic and cognitive effectiveness: bitstrings generate new questions about
- the linguistic/cognitive aspects of the expressions they encode
- the relative weight/strength of individual bit positions inside bitstrings
- the underlying scalar/linear structure of the conceptual domain
- edges versus center in bitstrings of length 3

- bitstrings of length 4 as refinements/coarsenings of bitstrings of length 3

Bitstrings: limitations of the informal approach

- no systematic method for establishing a bitstring semantics for any fragment \mathcal{F} in any logical system S
nas운 final part of lecture 1
- no good grasp of the intricate interplay between Aristotelian and Boolean structure
㽣 first part of lecture 4
- no good grasp of the logic-sensitivity of the Aristotelian relations嗝 second part of lecture 4
- to overcome these limitations: develop more mathematically precise approach to bitstring semantics
- $\{0,1\}^{n}$ forms a Boolean algebra (bitstrings of length n)
- \wedge, \vee and \neg are defined componentwise
- top element: $1 \cdots 1$
- bottom element: $0 \cdots 0$
- we can define the Aristotelian relations between bitstrings: two bitstrings $b_{1}, b_{2} \in\{0,1\}^{n}$ are

n-contradictory $\left(C D_{n}\right)$	iff	$b_{1} \wedge b_{2}=0 \cdots 0$	and	$b_{1} \vee b_{2}=1 \cdots 1$
n-contrary $\left(C_{n}\right)$	iff	$b_{1} \wedge b_{2}=0 \cdots 0$	and	$b_{1} \vee b_{2} \neq 1 \cdots 1$
n-subcontrary $\left(S C_{n}\right)$	iff	$b_{1} \wedge b_{2} \neq 0 \cdots 0$	and	$b_{1} \vee b_{2}=1 \cdots 1$
in n-subalternation $\left(S A_{n}\right)$	iff	$b_{1} \wedge b_{2}=b_{1}$	and	$b_{1} \vee b_{2} \neq b_{1}$

- the Aristotelian geometry for bitstrings of length n :

$$
\mathcal{A \mathcal { G } _ { n }}:=\left\{C D_{n}, C_{n}, S C_{n}, S A_{n}\right\}
$$

Aristotelian and Boolean isomorphisms

- the setup:
- logical systems $\mathrm{S}_{1}, \mathrm{~S}_{2}$ and natural numbers n_{1}, n_{2}
- $x \in\left\{\mathrm{~S}_{1}, n_{1}\right\}$ and $y \in\left\{\mathrm{~S}_{2}, n_{2}\right\}$
- \mathcal{F}_{x} is a finite set of formulas of system x /bitstrings of length x
- \mathcal{F}_{y} is a finite set of formulas of system $y /$ bitstrings of length y
- we will define functions from \mathcal{F}_{x} to \mathcal{F}_{y}
- this encompasses four cases:
- from formulas of S_{1} to formulas of S_{2}
- from formulas of S_{1} to bitstrings of length n_{2}
- from bitstrings of length n_{1} to formulas of S_{2}
- from bitstrings of length n_{1} to bitstrings of length n_{2}

Aristotelian and Boolean isomorphisms

- the setup:
- logical systems S_{1}, S_{2} and natural numbers n_{1}, n_{2}
- $x \in\left\{\mathrm{~S}_{1}, n_{1}\right\}$ and $y \in\left\{\mathrm{~S}_{2}, n_{2}\right\}$
- \mathcal{F}_{x} is a finite set of formulas of system x /bitstrings of length x
- \mathcal{F}_{y} is a finite set of formulas of system $y /$ bitstrings of length y
- a bijection $\gamma: \mathcal{F}_{x} \rightarrow \mathcal{F}_{y}$ is an Aristotelian isomorphism iff for all Aristotelian relations $R_{x} \in \mathcal{A} \mathcal{G}_{x}$ and corresponding $R_{y} \in \mathcal{A} \mathcal{G}_{y}$, and for all $\varphi, \psi \in \mathcal{F}_{x}$, it holds that $R_{x}(\varphi, \psi)$ iff $R_{y}(\gamma(\varphi), \gamma(\psi))$
- a bijection $\gamma: \mathcal{F}_{x} \rightarrow \mathcal{F}_{y}$ is a Boolean isomorphism iff there exists some Boolean algebra isomorphism $f: \mathbb{B}\left(\mathcal{F}_{x}\right) \rightarrow \mathbb{B}\left(\mathcal{F}_{y}\right)$ such that $\gamma=f \upharpoonright \mathcal{F}_{x}$
(recall that $\mathbb{B}(\mathcal{F})$ is the Boolean closure of \mathcal{F})
- since the Aristotelian relations are defined in purely Boolean terms, the Aristotelian structure of a fragment is entirely determined by its Boolean structure
- lemma: for any $\gamma: \mathcal{F}_{x} \rightarrow \mathcal{F}_{y}$:
if γ is a Boolean isomorphism, then γ is an Aristotelian isomorphism
- a bitstring semantics for \mathcal{F}_{x} is a Boolean algebra isomorphism $\beta: \mathbb{B} \rightarrow\{0,1\}^{n}$, where \mathbb{B} is some Boolean algebra that contains \mathcal{F}_{x} (not necessarily the smallest one)
- lemma: every bitstring semantics $\beta: \mathbb{B} \rightarrow\{0,1\}^{n}$ is an Aristotelian isomorphism

Example

－fragment \mathcal{F} of S5－formulas：$\{\square p, \diamond p, \square \neg p, \diamond \neg p\}$
－two Boolean algebras that contain \mathcal{F} ：
－ \mathbb{B}_{3} ，which has atoms $\square p, \Delta p \wedge \diamond \neg p$ and $\square \neg p$ （note： $\mathbb{B}_{3}=\mathbb{B}(\mathcal{F})$ ）
－ \mathbb{B}_{4} ，which has atoms $\square p, p \wedge \diamond \neg p, \neg p \wedge \diamond p$ and $\square \neg p$
－two bitstring semantics for \mathcal{F} ：
－$\beta_{3}: \mathbb{B}_{3} \rightarrow\{0,1\}^{3}$
－$\beta_{4}: \mathbb{B}_{4} \rightarrow\{0,1\}^{4}$
（a）

contradiction \qquad subcontrariety ーーーー contrariety

（c）
subalternation
KU LEUVEN

Partitions

- let S be a logical system with Boolean operators and a semantics \models, and consider $\mathcal{F}=\left\{\varphi_{1}, \ldots, \varphi_{m}\right\} \subseteq \mathcal{L}$ S
- the partition of S induced by \mathcal{F} is
$\Pi_{\mathrm{S}}(\mathcal{F}):=\left\{\alpha \in \mathcal{L}_{\mathrm{S}} \mid \alpha \equiv \mathrm{S} \pm \varphi_{1} \wedge \cdots \wedge \pm \varphi_{m}\right.$, and α is S-consistent $\}$
- $\pm \varphi$ stands for either φ or $\neg \varphi ; \quad \alpha$ should be read up to \equiv s
- the formulas $\alpha \in \Pi_{S}(\mathcal{F})$ are called anchor formulas
- in principle, equivalent to a conjunction of $m=|\mathcal{F}|$ conjuncts
- can often be simplified, e.g. when $\neg \varphi_{i} \equiv \mathrm{~S} \varphi_{j}$ for some $\varphi_{i}, \varphi_{j} \in \mathcal{F}$
- $\Pi_{S}(\mathcal{F})$ is a partition of (the class of all models of) S :
- $\models_{\mathrm{s}} \neg\left(\alpha_{i} \wedge \alpha_{j}\right)$ for distinct $\alpha_{i}, \alpha_{j} \in \Pi_{\mathrm{s}}(\mathcal{F})$
- $\models_{\mathrm{s}} \bigvee \Pi_{\mathrm{s}}(\mathcal{F})$
(mutually exclusive)
(jointly exhaustive)

Example

- first-order logic (FOL), fragment $\mathcal{F}:=\{\forall x P x, \exists x P x, \neg P a\}$
- let's compute $\Pi_{\mathrm{FOL}}(\mathcal{F})$, the partition of FOL induced by \mathcal{F}
- there are $2^{|\mathcal{F}|}=2^{3}=8$ relevant conjunctions

1. $\forall x P x \wedge \exists x P x \wedge \neg P a \leadsto$ FOL-inconsistent
2. $\forall x P x \wedge \exists x P x \wedge \neg \neg P a \rightsquigarrow \forall x P x$
3. $\forall x P x \wedge \neg \exists x P x \wedge \neg P a \rightsquigarrow$ FOL-inconsistent
4. $\forall x P x \wedge \neg \exists x P x \wedge \neg \neg P a \rightsquigarrow$ FOL-inconsistent
5. $\neg \forall x P x \wedge \exists x P x \wedge \neg P a \rightsquigarrow \neg P a \wedge \exists x P x$
6. $\neg \forall x P x \wedge \exists x P x \wedge \neg \neg P a \leadsto P a \wedge \neg \forall x P x$
7. $\neg \forall x P x \wedge \neg \exists x P x \wedge \quad \neg P a \leadsto \exists \exists x P x$
8. $\neg \forall x P x \wedge \neg \exists x P x \wedge \neg \neg P a \leadsto$ FOL-inconsistent

- $\Pi_{\mathrm{FOL}}(\mathcal{F})=\{\forall x P x, \neg P a \wedge \exists x P x, P a \wedge \neg \forall x P x, \neg \exists x P x\}$

Properties of partitions

- given partitions Π_{1} and Π_{2} :
- Π_{1} is a refinement of Π_{2} iff for all $\alpha \in \Pi_{1}$ there exists $\alpha^{\prime} \in \Pi_{2}$ such that $\models \mathrm{s} \alpha \rightarrow \alpha^{\prime}$
- the meet of Π_{1} and Π_{2} is defined as follows:
$\Pi_{1} \wedge_{\mathrm{s}} \Pi_{2}:=\left\{\gamma_{1} \wedge \gamma_{2} \mid \gamma_{1} \in \Pi_{1}, \gamma_{2} \in \Pi_{2}\right.$, and $\gamma_{1} \wedge \gamma_{2}$ is S-consistent $\}$
- note: $\Pi_{1} \wedge_{s} \Pi_{2}$ is the coarsest common refinement of Π_{1} and Π_{2}
- lemma: if $\mathcal{F}_{1} \cup \mathcal{F}_{2}=\mathcal{F}$, then $\Pi_{\mathrm{S}}\left(\mathcal{F}_{1}\right) \wedge_{\mathrm{S}} \Pi_{\mathrm{S}}\left(\mathcal{F}_{2}\right)=\Pi_{\mathrm{S}}(\mathcal{F})$
- lemma: if $\mathcal{F}_{1} \subseteq \mathcal{F}_{2}$, then $\Pi_{S}\left(\mathcal{F}_{2}\right)$ is a refinement of $\Pi_{S}\left(\mathcal{F}_{1}\right)$
- given two logics S_{1} and S_{2} (with the same language \mathcal{L}), we say that S_{2} is stronger than S_{1} iff for all $\varphi \in \mathcal{L}$: if $\models_{\mathrm{s}_{1}} \varphi$ then $\models_{\mathrm{S}_{2}} \varphi$
- lemma: if S_{2} is stronger than S_{1}, then $\Pi_{\mathrm{S}_{2}}(\mathcal{F})=\left\{\alpha \in \Pi_{\mathrm{S}_{1}}(\mathcal{F}) \mid \alpha\right.$ is S_{2}-consistent $\}$

Partition-based bitstring semantics

- logic S , fragment \mathcal{F} and partition $\Pi_{\mathrm{S}}(\mathcal{F})=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$
- lemma: for all $\varphi \in \mathbb{B}(\mathcal{F})$:
- for all $\alpha_{i} \in \Pi_{\mathrm{S}}(\mathcal{F})$ we have $\models_{\mathrm{S}} \alpha_{i} \rightarrow \varphi$ or $\models_{\mathrm{S}} \alpha_{i} \rightarrow \neg \varphi$, but not both
- $\varphi \equiv \mathrm{s} \bigvee\left\{\alpha \in \Pi_{\mathrm{S}}(\mathcal{F}) \mid \models_{\mathrm{s}} \alpha \rightarrow \varphi\right\}$
- for every $\varphi \in \mathbb{B}(\mathcal{F})$, we define a bitstring $\beta_{\mathrm{S}}^{\mathcal{F}}(\varphi) \in\{0,1\}^{n}$ as follows:
for each bit position $1 \leq i \leq n:\left[\beta_{\mathrm{S}}^{\mathcal{F}}(\varphi)\right]_{i}:= \begin{cases}1 & \text { if } \models_{\mathrm{S}} \alpha_{i} \rightarrow \varphi, \\ 0 & \text { if } \neq \mathrm{S} \alpha_{i} \rightarrow \neg \varphi .\end{cases}$
- lemma: for all $\varphi \in \mathbb{B}(\mathcal{F})$ we have $\varphi \equiv \mathrm{S} \bigvee\left\{\alpha_{i} \in \Pi_{\mathrm{S}}(\mathcal{F}) \mid\left[\beta_{\mathrm{S}}^{\mathcal{F}}(\varphi)\right]_{i}=1\right\}$
- relativized disjunctive normal form: φ is rewritten as
- a disjunction of anchor formulas, which are themselves
- conjunctions of (possibly negated) formulas $\pm \varphi_{j} \in \mathcal{F}$

Partition-based bitstring semantics

- for every $\varphi \in \mathbb{B}(\mathcal{F})$, we have bitstring $\beta_{\mathrm{S}}^{\mathcal{F}}(\varphi) \in\{0,1\}^{n}=\{0,1\}^{\left|\Pi_{\mathrm{s}}(\mathcal{F})\right|}$
- turn this into a function $\beta_{\mathrm{S}}^{\mathcal{F}}: \mathbb{B}(\mathcal{F}) \rightarrow\{0,1\}^{\left|\Pi_{\mathrm{S}}(\mathcal{F})\right|}$
- theorem: $\beta_{\mathrm{S}}^{\mathcal{F}}$ is a bitstring semantics for \mathcal{F}
- corollary: $|\mathbb{B}(\mathcal{F})|=2^{\left|\Pi_{\mathrm{S}}(\mathcal{F})\right|}$
- corollary: $\beta_{\mathrm{S}}^{\mathcal{F}}$ is an Aristotelian isomorphism
- corollary: $\beta_{\mathrm{S}}^{\mathcal{F}}$ is a minimal bitstring semantics for \mathcal{F} :
every other bitstring semantics for \mathcal{F} is
either a permutation variant of $\beta_{\mathrm{S}}^{\mathcal{F}}$ or makes use of bitstrings of length $>\left|\Pi_{S}(\mathcal{F})\right|$
- fragment size $m:=|\mathcal{F}|$ and bitstring length $n:=\left|\Pi_{\mathrm{S}}(\mathcal{F})\right|$
- theorem:
$\begin{array}{ll}\text { (1) } \text { we can bound } m \text { in terms of } n: & \left\lceil\log _{2}(n)\right\rceil \leq m \leq 2^{n} \\ \text { (2) we can bound } n \text { in terms of } m: & \left\lceil\log _{2}(m)\right\rceil \leq n \leq 2^{m}\end{array}$
- (1) and (2) can be seen as each other's inverses
- all these bounds are tight
- theorem (special case, but very relevant for logical geometry): if \mathcal{F} only contains S-contingent formulas and is closed under negation:
$\begin{array}{lrl}\text { (1') bound } m \text { in terms of } n: & 2\left\lceil\log _{2}(n)\right\rceil & \leq m \leq 2^{n}-2 \\ \text { (2') bound } n \text { in terms of } m: & \left\lceil\log _{2}(m+2)\right\rceil & \leq n \leq 2^{\frac{m}{2}}\end{array}$

Thank you!

Questions?

More info: www.logicalgeometry.org

