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Practicalities 2

o lecturers:

o Lorenz Demey
» primary background in logic and philosophy
» Center for Logic and Philosophy of Science, KU Leuven
» http://www.lorenzdemey.eu

e Hans Smessaert
» primary background in linguistics
» Research Group Formal and Computational Linguistics, KU Leuven
» http://wwwling.arts.kuleuven.be/ComForT/hsmessaert/

@ course website:

e http://logicalgeometry.org/tutorial-ess11i2018.htm
e course slides
e background readings
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Who are you? 3

@ what's your academic background?

o philosophy

logic

linguistics
mathematics
computer science

?7 ??7 7?72
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Motivating examples 4

@ logical geometry ~ the systematic study of Aristotelian diagrams

@ what are Aristotelian diagrams?

o later: precise definition
e now: some motivating examples

@ some general trends to pay attention to:

e long history, but still used today
o applications in logic and philosophy, but also in many other disciplines
e not just for teaching purposes, but also in research contexts
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Square of opposition 5

@ oldest and most well-known example of an Aristotelian diagram
@ the square of opposition for the categorical statements from syllogistics

o relations: Aristotle (4th century BCE)
o diagram: Apuleius of Madaura (2nd century CE),
Boethius (5th century CE)

all humans no humans
are rational are rational

contray{dictory

UONBUIS)[BQNS
UONBUId[BqNS

subcontrary

some humans some humans
are rational are not rational
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Thomasin von Zerclaere (1186 — 1238) 6

@ epic poem: Der Whilsche Gast
@ visual representation of the seven liberal arts
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Peter Abelard (1079 — 1142) 7

@ square for the quantifiers from the categorical statements (all, some, no)

@ also a square for the dual quantifiers (both, either, neither)

‘uterque eorum currit” contrariae ‘neuter currit’




Peter of Spain (13th century)

@ squares for the quantifiers and the modalities
@ within each vertex: duality behavior

@ every man runs

e no man does not run

e not some man does not run
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Non possiblle_est non esse Non possibile est esse
SO RESSRIE SR IR SRS Tertius est quarto

se semper contrarius ordo Non contingens est esse

Impossitile est non esse

Impossibile est esse

Necesse est esse Necesse est non esse
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William of Ockham (1285 — 1347) 9

e modal syllogistics: propositions with quantifiers and modalities
o ‘figura completa’, but also ‘figura incompleta’

Sic igitur per istas propositiones habetur una figura completa ha-
bens propositiones contrarias, contradictorias, subalternas et subcon-
trarias sic dispositas:

contrariae

omnis homo de necessitate est albus omnis homo de necessitate non est albus

subalternac

sewaneqns

aliquis homo potest csse albus aliquis homo potest non albus
subcontrariae

contrariantur, quia possunt esse simul falsae. Et ita habetur tertia fi-
gura, sed incompleta, talis:

omnis homo potest esse albus omnis homo potest non esse albus

o i o KU LEUVEN
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John Buridan (1300 — 1358) 10

@ integrates several squares into one ‘magna figura’

e for modal syllogistics, but also for other types of propositions
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Nicole Oresme (1323 — 1382) 11

@ (proto-scientific) cosmology: Livre du Ciel et du Monde

@ an ‘extended’ square: add the conjunction of the two lower corners

always possible  glways possible
to be not to be

not always
possible not to be possible to be

the intermediate
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Jacques Lefévre d’Etaples (1455 — 1536) 12

@ analogy:

e a square for propositions // a square for properties
e ‘cannot be true together' // ‘cannot be instantiated together’
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Anton Erber (1695 — 1746)

13

@ squares for quantifiers, propositional connectives,
modalities, temporal and spatial adverbs

TABULA PRIMA.
Exhibens oppofitionem propofitionum fimplicium.

Omnis homo currit.

Semper homo currit,
Ubique homo currit.
Uterque homo currit.

zUIDI[EqNg

Aliquis homo currit.
Aliquando homo currit.
Alicubi homo currit,
Alteruter homo currit.

Subcontrariz

Nullus homo currit,
Nunquam homo currit,
Nullibi homo currit,
Neuter homo currit.

2uI23Eqng

Aliquis homo non currit.
Aliquando homo non currit.
Alicubi homo non cursit,

Alteruter homo non currit.

A TABULA TERTIA b
Exhibens oppofitionem propofitionum copulativarum,

& disjunétivarum.

Ominis homo ¢ urrit,
& omnis canis latrat.

Petrus currit,
& Paulus fedet

Contrariz

Zu[Equg

Nec Paulus fedet,

Nullus homo currit,
& nullus canis latrat,

Nec Petrus currit,

7

&
8
i

Vel aliquis homo curric,
Vel aliquis canis latra.
Vel Petrus currit,
Vel Paulus (edet.

Subcontrariz

Vel aliquis homo rion currit,
Vel aliquis cani

Vel Paulus non fedet,

n latrac.

currit,
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Richard Whately (1787 — 1863) 14

@ “In the nineteenth century, the apparently most widely used textbook in
Britain and America” (Parsons, 2017)

@ usual square for the categorical statements

@ three types of matter (connection between subject and predicate):
[n]ecessary, [ijmpossible and [c]ontingent

[Every Xis Y] [NoX is Y]

o

PF A i ELL
e f. \ / f c.
A 2 @ép
&
{1- Vo / f. 9’
. | J) e
1: N . X

[Some X is Y] [Some X is not Y]
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Gottlob Frege (1848 — 1925) 15

@ a square of opposition in Begriffschrift notation

@ note the mistake: ‘contrar’ ~ ‘subcontrar’

WE‘ P@) ot "‘\-"E« P(a)
X(nv)

X(a)
8 8
N
v %, & u
b "]. \0( b
a M Y
1 i
[/
t RS ‘o, . t
e N Y ¢
S
r & () ¢ r
n n
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John Neville Keynes (1852 — 1949) 16

@ octagon for the categorical statements with subject negation
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20th-century/contemporary philosophers and logicians 17

@ Ruth Barcan Marcus
Arthur Prior

Hans Reichenbach

H. L. A. Hart (cf. figure)
Roderick Chisholm

°

°

@ Richard Hare
°

°

@ Ernest Sosa

Command Prohibition
CONTRARY

¢ O
&, A
A

v,

SUBALTERN TO
SUBALTERN TO

SUBCONTRARY
Permission to act Permission to refrain
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Applications beyond logic and philosophy 18

o linguistics

e semantics (generalized quantifiers) (Dag Westerstahl)
e pragmatics (implicatures) (Laurence Horn)
e typology (lexicalization) (Debra Ziegeler)
1 like her 1 dislike her
A E
lallt tsomet
I I 0
lno} tnot alll 1 ion distike her Idon’t like her

On the empty O-corner of the Aristotelian Square:
A view from Singapore English

Debra Ziegeler

Université Sorbonne Nouvelle Paris 3, France

Received 25 March 2016; received in revised form 16 March 2017; accepted 18 March 2017
Available online 18 May 2017
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Applications beyond logic and philosophy 19

@ cognitive science

e psychology of reasoning (Stephen Newstead, Richard Griggs)
e emotions research (Olivier Massin)
@ neuroscience (Camillo Porcaro et al.)
Pleasant \C"mrarew Indolent
Subalternation Contradiction Subalternation
Non-indolent Subcontrariety Non»pleasant

(pleasant or unpleasant) (unpleasant or indolent)

Drawing Inferences from Quantified Statements: A Study of the
Square of Opposition

Universal vs. particular reasoning: a study

with neuroimaging techniques
KU LEUVEN
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Applications beyond logic and philosophy 20

e computer science (knowledge representation)

o formal concept analysis (Didier Dubois, Henri Prade)

e rough set theory (Yiyu Yao, Davide Ciucci)

e formal argumentation theory (Leila Amgoud)
L(X)UE(X)

- ) O)

ftc(m —C(-x) / \
E(X)
/.

/5

Bnd(X)

Ay € @) R Cl)

The Cube of Opposition -
A Structure underlying many Knowledge Representation Formalisms
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Towards logical geometry 21

o Aristotelian diagrams have been used

o for a very long time (including today)
e in a wide variety of disciplines (not just logic and philosophy)

o Aristotelian diagrams constitute a language for a broad
(transdisciplinary and transhistorical) community of researchers
who deal with logical reasoning

o logical geometry ~ the linguistics that systematically studies
the language of Aristotelian diagrams

o two fundamental aspects of any language:

e syntax: form, representation ~ ‘geometry’
e semantics: meaning, what is represented ~ ‘logical’

KU LEUVEN
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Towards logical geometry 22

o perspective shift:

@ in a typical application:
Aristotelian diagrams are used (= tool)
to analyze some linguistic, logical, conceptual phenomenon (= object)

e in logical geometry:
Aristotelian diagrams are themselves the primary objects of study,
analyzed using a variety of tools (bitstring analysis, group theory, etc.)

@ this has led to an elaborate (and growing) elegant theory
(regardless of the multitude of applications)

e double motivation for logical geometry:

o Aristotelian diagrams as objects of independent interest
o Aristotelian diagrams as a widely-used language

KU LEUVEN
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Broader context 23

@ other types of logic diagrams:

o Hasse diagrams
e Euler/Venn diagrams
e duality diagrams

@ since the 1990s: diagrammatic reasoning

@ two courses at ESSLLI 2017;

e Caught in the Spiders’ Diagrammatic Reasoning Web — The Euler/Spider
Diagram Family of Formal Reasoning Systems
e Picturing Quantum Processes

We provide a self-contained introduction to quantum theory . .. This course is
unique in our use of a diagrammatic language throughout. Far from simple
visual aids, the diagrams we use are mathematical objects in their own right

KU LEUVEN
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Structure of the course 24

1. Basic Concepts and Bitstring Semantics

2. Abstract-Logical Properties of Aristotelian Diagrams, Part |
IS” Aristotelian, Opposition, Implication and Duality Relations

3. Visual-Geometric Properties of Aristotelian Diagrams
IS Informational Equivalence, Symmetry and Distance

4. Abstract-Logical Properties of Aristotelian Diagrams, Part I
5" Boolean Structure and Logic-Sensitivity

5. Case Studies and Philosophical Qutlook
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Structure of the course 25

1. Basic Concepts and Bitstring Semantics

2. Abstract-Logical Properties of Aristotelian Diagrams, Part |
IS” Aristotelian, Opposition, Implication and Duality Relations

3. Visual-Geometric Properties of Aristotelian Diagrams
IS Informational Equivalence, Symmetry and Distance

4. Abstract-Logical Properties of Aristotelian Diagrams, Part I
5" Boolean Structure and Logic-Sensitivity

5. Case Studies and Philosophical Qutlook
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Aristotelian relations: informal characterisation 26

@ two propositions are said to be

they cannot be true together and

they cannot be false together

they cannot be true together but

they can be false together

subcontrary (SC) iff they can be true together but

they cannot be false together

the first proposition entails the second but
the second doesn’t entail the first

contradictory (CD) iff

contrary (C) iff

in subalternation (SA) iff

all humans no humans
are rational are rational

uonEUIdEqNS
UONEUId}EqNS

some humans some humans
are rational are not rational
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Aristotelian relations: model-theoretic characterisation 27

@ let S be a logical system with

o the usual Boolean connectives (A, V, -, —)
e a model-theoretic semantics (=)

@ two formulas ¢, € Lg are said to be

S-contradictory (CDs) iff Es—(eAy) and s (- A )
S-contrary (Cs) iff  Es—(eAy) and s (- A )
S-subcontrary (SCs) iff s —(pAY) and s (= A -)

in S-subalternation (SAs) iff s — and sy — o
@ the Aristotelian geometry for S: AGs := {CDs, Cs, SCs, SAs}

@ the Aristotelian relations are defined up to logical equivalence:

e suppose that o =5 ¢’ and ) =5 ¥’
o then for all R € AGs: Rs(p,v) < Rs(¢',¢')

KU LEUVEN
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Aristotelian relations: algebraic characterisation 28

o let B=(B,A,V,—,T,L) be an arbitrary Boolean algebra

@ two elements z,y € B are said to be

B-contradictory (CDg) iff zAy=1 and zVy=T
B-contrary (Cg) iff zAy=1 and axVy#T
B-subcontrary (SCg) iff zAy#L and zVy=T

in B-subalternation (SAg) iff —-xVy=T and aV-y#T

@ the Aristotelian geometry for B: AGp := {CDg, Cg, SCg, SAR}

@ thanks to this abstract characterisation, Aristotelian relations can be
defined between formulas/statements and between sets/concepts
o cf. Lefévre d'Etaples’s ‘analogia’ between two squares of oppositions
o Keynes, 1906: “These seven possible relations between propositions
(taken in pairs) will be found to be precisely analogous to the seven

possible relations between classes (taken in pairs)”
; . KU LEUVEN
Introduction to Logical Geometry — Part 1



Aristotelian relations: logical characterisation 29

@ first concrete instance of the algebraic characterisation:
Aristotelian relations in a Lindenbaum-Tarski algebra

@ S-equivalence classes of formulas: [p]s := {¢ € Ls | ¢ =s ¢}

@ let B(S) be the Lindenbaum-Tarski algebra of the logical system S

@ two equivalence classes [¢]s, [¢/]s are said to be

B(S)-contradictory iff [plsA[¥]ls=L and [p|sV[Y]s=T
B(S)-contrary iff  [ols A[Y]ls=1L and [plsV[]s #T
B(S)-subcontrary iff  [olsA[Y]s# L and [plsV[¢]s =T
in B(S)-subalternation iff [-plsV [Y]s =T and [p|sV[-]s # T

@ this characterisation essentially corresponds to the model-theoretic one:
e.g. ¢ and 1 are S-contrary iff [¢]s and [¢]s are B(S)-contrary

KU LEUVEN
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Aristotelian relations: set-theoretic characterisation 30

@ second concrete instance of the algebraic characterisation:
Aristotelian relations in a Boolean algebra of sets

e let B=(B,N,U,\,D,0) be a Boolean algebra of sets

@ two sets X, Y € B are said to be

B-contradictory iff XNY =0 and XUY =D
B-contrary iff XNY =40 and XUY #D
B-subcontrary iff XNY #0) and XUY =D

in B-subalternation iff (D\X)UY =D and XU(D\Y)#D

KU LEUVEN
Introduction to Logical Geometry — Part 1



Aristotelian relations and unconnectedness 31

@ informal characterisation:
two propositions ¢, are said to be unconnected iff

(i) ¢ and 1 can be true together and

(i) ¢ does not entail ¢ and
(iii) ¢ does not entail ¢ and
(iv) ¢ and 1 can be false together

o together, these four conditions imply that ¢ and v do not stand
in any Aristotelian relation:

e condition (i) implies that ¢ and 4 are neither CD nor C

e condition (ii) implies that there is no SA from ¢ to ¢

e condition (iii) implies that there is no SA from ) to ¢

e condition (iv) implies that ¢ and v are neither CD nor SC

KU LEUVEN
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Aristotelian relations and unconnectedness 32

@ model-theoretic characterisation:
two formulas ¢, 1) are said to be S-unconnected iff

(i) Fs (A1) and
(i) Fsp—1 and
(i) s — o and
(iv) s (= A=)

@ algebraic characterisation:
two elements z,y € B are said to be B-unconnected iff
(1) N y#L and
(i) xAN-y# 1L and
(i) —axA y#L1L and
(iv) —axA-y#L

KU LEUVEN
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Aristotelian relations and unconnectedness 33

o first concrete instance: Lindenbaum-Tarski algebra:
two equivalence classes [¢]s, [¢]s are said to be B(S)-unconnected iff

(i) [pls Alhls # L and
(i) lpls A[=]s # L and
(i) [~pls Al¢]s # L and
(V) [=ls A [9]s # L

@ second concrete instance: Boolean algebra of sets:
two sets X,Y € B are said to be B-unconnected iff
(i) XNY #0 and
(i) XN(D\Y)#0 and
(i) (D\X)NY #0 and
(iv) (D\X)N(D\Y) #0

KU LEUVEN
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Bitstrings in logical geometry: the basics 34

@ bitstrings are finite sequences of bits (0/1), e.g. 10101011

@ bitstrings can encode the denotations of formulas or expressions from:

o logical systems: e.g. classical propositional logic, first-order logic, modal
logic and public announcement logic

o lexical fields: e.g. comparative quantification, subjective quantification,
color terms and set inclusion relations

@ each bit provides an answer to a meaningful (binary) question
(origin: analysis of generalized quantifiers as sets of sets)

@ note:

e we use bitstrings to encode formulas, not relations between formulas
o if a formula ¢ is encoded by the bitstring b, we write 5(¢) = b
o [b]; denotes the i*" bit position of the bitstring b

KU LEUVEN
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Bitstrings in logical geometry: the basics 35

@ each question concerns a component (point/interval) of a
scalar structure that creates a partition of logical space

Hno Dp
@ ®

1/0 1/0

1/0

all

1/0

1/0

1/0

@ application to FOL/GQT: is Q(A, B) true if

ACB ? yes/no
A¢Band ANB#0 7 yes/no
ANB=10 7 yes/no
B(all A are B) =100 = ( yes, no, no)
e examples: [(some but not all A are B) =010 = ( no, yes, no )
B(not all A are B) =011 = ( no, yes, yes )
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Bitstrings in logical geomery: the basics 36

@ application to the modal logic S5: is ¢ true if

p is true in all possible worlds? yes/no
p is true in some but not in all possible worlds? yes/no
p is true in no possible worlds? yes/no
B(Op) =110 = ( yes, yes, no )
e examples: [B(OpAO-p) =010 = ( no, yes, no)
B(O-p) =011 = ( no, yes, yes )
Modal Logic GQT level 1/0 | level 2/3 GQT Modal Logic
necessary (Cp) all 100 011 not all not necessary (—Cp)
contingent (TUp N Op) | some but not all | 010 101 noor all | not contingent (Cp \V —Cp)
impossible (—Op) no 001 110 some possible (0p)
contradiction (Op /\ —p) | some and no ‘_‘ SOme or no tautology (Op v —Up)
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Bitstrings in logical geometry: the basics 37

Lp —0p
o —| @ p p P, P
P P q | —q q | ¢

1/0 |1/0 1/0 | 1/0 1/0 1/0 1/0 1/0

e second application to the modal logic S5: is ¢ true if

p is true in all possible worlds? yes/no

p is true in the actual world but not in all possible worlds? yes/no

p is true in some possible worlds but not in the actual world? yes/no

p is true in no possible worlds? yes/no
B(Op) = 1110 = ( yes, yes, yes, no )
e examples: [B(OpAO-p) = 0110 = ( no, yes, yes, no )
B(O—p) = 0111 = ( no, yes, yes, yes )
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Bitstrings in logical geometry: the basics 38

Lp —0p
o —| @ p p P, P
P P q | —q q | ¢

1/0 |1/0 1/0 | 1/0 1/0 1/0 1/0 1/0

@ application to propositional logic: is ¢ true if

pis true and q is true? yes/no
p is true and q is false? yes/no
p is false and ¢ is true? yes/no
p is false and ¢ is false? yes/no
B(—p) = 0011 = ( no, no, yes, yes )

e examples: [(p <+ q) =1001 = (yes, no, no, yes )
B(p—q) =1011 = (yes, no, yes, yes )

KU LEUVEN
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Bitstrings in logical geometry: the basics

39

from 23 = 8 bitstrings of length 3 to 2% = 16 bitstrings of length 4

KU LEUVEN
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Modal Logic Propositional | bitstrings | bitstrings | Propositional Modal Logic
S5 Logic levell | level3 Logic 85
Op pAg 1000 0111 —(pAq) —p
pAp —(p~q) 0100 1011 p-q OpV —p
GpATp —(p-q) 0010 1101 peq ~GpVp
—Op —(pVq) 0001 1110 pVg $p
Modal Logic Propositional | bitstrings | bitstrings | Propositional Modal Logic
S5 Logic level 2/0 |level 2/4 Logic S5
P P 1100 0011 —p »
OpV (Cp/A—p) q 1010 0101 —q —¢pV ((Op A p)
OpV —<p pP-q 1001 0110 —(p-q) —p A Op
OpA—Cp pPATD Vo Opv {p




Bitstrings in logical geometry: the basics 40

@ recall: given a logic S, two formulas ¢, 1) are

S-contradictory (CDs) iff Es—(eAy) and s (- A )
S-contrary (Cs) iff Es-(pAvY) and s (= A )
S-subcontrary (SCs) iff s (pAY) and s (- A )

in S-subalternation (SAs) iff s — and sy — o

e {0,1}"™ is a Boolean algebra, so it can be used to characterise the
Aristotelian relations: two bitstrings by, by of length n are

n-contradictory (CD,,) iff by Aby=0---0 and by Vby=1---1
n-contrary (C,) ifft by Abo=0---0 and b Vby#1---1
n-subcontrary (SC,,) ifft by Aby#0---0 and by Vby=1---1
in n-subalternation (SA,) iff by Nby =1by and by Vb #£ by

@ © and 1 stand in some Aristotelian relation (defined for S) iff
B(p) and (1)) stand in that same relation (defined for bitstrings)

@ (3 maps formulas from S to bitstrings, preserving Aristotelian structure

KU LEUVEN
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Aristotelian diagrams: algebraic characterisation 41

o let B=(B,A,V,—, T,1) be an arbitrary Boolean algebra
@ consider a non-empty fragment F C B such that
o T, L ¢&F
o F is closed under B-complementation: if x € F then —x € F

@ an Aristotelian diagram for F in B is a diagram that visualizes an
edge-labeled graph G
o the vertices of G are the elements of F
o the edges of G are labeled by the relations of AGg between those elements
e if z,y € F stand in some Aristotelian relation in B, then this is visualized
according to the code

— contradictory e subcontrary

= = contrary =p subalternation
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Aristotelian diagrams: model-theoretic characterisation 42

@ let S be an appropriate logical system (Boolean + )
@ consider a non-empty fragment F C Lg such that
e every formula ¢ € F is S-contingent: [~s ¢ and j£s —¢
e F is closed under negation (up to =s):
if o € Fthen 3y € F:9p =5 —p
o the formulas in F are pairwise non-S-equivalent:
if o,1 € F are distinct, then ¢ #s ¢

@ an Aristotelian diagram for F in S is a diagram that visualizes an
edge-labeled graph G
o the vertices of G are the elements of F
o the edges of G are labeled by the relations of AGs between those elements
e if ¢,1) € F stand in some Aristotelian relation in S, then this is visualized
according to the code
= contradictory e subcontrary
== contrary =3 subalternation
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Examples: Aristotelian PCDs for the modal logic S5 43

100 011 1000 0111
0p —————— ap ————— ~op
110 001 1100 0011
op ——— ~0p p———p

o PCD = pair of contradictories

@ a PCD is the smallest possible Aristotelian diagram

e no Aristotelian diagrams with a single formula
e because of the requirement that they be closed under negation

@ PCDs are the building blocks for all larger Aristotelian diagrams
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Examples: Aristotelian squares for the modal logic S5 a4

p ~Op A <p
1100 0110
1001 o1
op ~Lp LpV—0p P
classical square degenerate square
square of opposition unconnectedness square

X of opposition

2 PCDs 2 PCDs
2 subalternations (SA)
1 contrariety (C) 4 x unconnectedness (U)

1 subcontrariety (SC)
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Aristotelian hexagons for the modal logic S5 45

Op —op
000 0001

Jacoby-Sesmat-Blanché hexagon Sherwood-Czezowski hexagon

JSB hexagon SC hexagon
3 PCDs 3 PCDs
6 subalternations (SA) 6 subalternations (SA)
3 contrarieties (C) 3 contrarieties (C)
3 subcontrarieties (SC) 3 subcontrarieties (SC)
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Aristotelian octagons for the modal logic S5 46

1110
oo, e o
Béziau octagon Buridan octagon
4 PCDs 4 PCDs
10 SAs & 5 Cs & 5 SCs 10 SAs & 5 Cs & 5 SCs
4 x unconnectedness (U) 4 x unconnectedness (U)
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Boolean closure 47

e Boolean closure of a fragment F:

o the smallest Boolean algebra that contains F

e contains all Boolean combinations of formulas from F
e notation: B(F)

e contains 2" formulas, for some natural number n

e Boolean closure of an Aristotelian diagram for F in S:
o Aristotelian diagram for B(F) in S

e note: Aristotelian diagram, so only S-contingent formulas
e contains 2" — 2 formulas, for some natural number n

@ some examples:

o the Boolean closure of a classical square is a JSB hexagon

= 23 — 2 = 6 contingent Boolean combinations
e the Boolean closure of a degenerate square is a rhombic dodecahedron
o the Boolean closure of an SC hexagon is a rhombic dodecahedron

= 2% — 2 = 14 contingent Boolean combinations
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Boolean closure 48

@ the Boolean closure of a classical square is a JSB hexagon

OpvO—p
op o—p op o—p

=)

Op O p Op O—p
Opa O—p
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The effectiveness of bitstring semantics 49

@ logical and diagrammatic effectiveness IS next lectures

@ linguistic and cognitive effectiveness:
bitstrings generate new questions about
o the linguistic/cognitive aspects of the expressions they encode
o the relative weight/strength of individual bit positions inside bitstrings
o the underlying scalar/linear structure of the conceptual domain

@ edges versus center in bitstrings of length 3

Op —0p all no < = >
o —| 0 o —\0 vs o
1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0

@ bitstrings of length 4 as refinements/coarsenings of bitstrings of length 3

p —0p all no
o—io o —|o E|r| ¥ P
vs — | — — —
— — q -q q -q
P P many | few
1/0 o | 10 1/0

1/0 | 1/0 1/0 | 1/0 1/0 1/0 1/0 1/0
; . KU LEUVEN
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Bitstrings: limitations of the informal approach 50

@ no systematic method for establishing a bitstring semantics
for any fragment F in any logical system S

IS final part of lecture 1

@ no good grasp of the intricate interplay between
Aristotelian and Boolean structure

IS first part of lecture 4

@ no good grasp of the logic-sensitivity of the Aristotelian relations
IS” second part of lecture 4

@ to overcome these limitations: develop more mathematically precise
approach to bitstring semantics
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Bitstring algebra 51

e {0,1}" forms a Boolean algebra (bitstrings of length n)

e A, V and — are defined componentwise
e top element: 1---1
e bottom element: 0---0

@ we can define the Aristotelian relations between bitstrings:
two bitstrings b1, be € {0,1}" are

n-contradictory (CD,,) iff byAby=0---0 and b Vby=1---1
n-contrary (C,,) iff byAby=0---0 and by Vby #1---1
n-subcontrary (SC,,) iff byAby#0---0 and by Vby=1---1
in m-subalternation (SA,) iff by Aby =1by and by Vb # by

@ the Aristotelian geometry for bitstrings of length n:

AG,, = {CD,, C,,SC,, SA, }
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Aristotelian and Boolean isomorphisms 52

o the setup:

logical systems S1,So and natural numbers ny, ns

xr e {Sl,nl} and Yy < {52,712}

F is a finite set of formulas of system x/bitstrings of length x
F, is a finite set of formulas of system y/bitstrings of length y

o we will define functions from 7, to F,

o this encompasses four cases:
o from formulas of S; to formulas of S,
o from formulas of S; to bitstrings of length ny
e from bitstrings of length n; to formulas of Sy
e from bitstrings of length n; to bitstrings of length ns
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Aristotelian and Boolean isomorphisms 53

o the setup:

logical systems S1,So and natural numbers ny, ns

xr e {Sl,nl} and Yy < {52,712}

F is a finite set of formulas of system x/bitstrings of length x
F, is a finite set of formulas of system y/bitstrings of length y

@ a bijection v: 7, — F, is an Aristotelian isomorphism iff for all
Aristotelian relations R, € AG, and corresponding R, € AG,, and for

all 4 € F,, it holds that R, (¢, ) iff Ry(v(v),v(¢))

@ a bijection v: F, — F, is a Boolean isomorphism iff there exists some
Boolean algebra isomorphism f: B(F,) — B(F,) such that v = f [ F,,

(recall that B(F) is the Boolean closure of F)
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Bitstring semantics 54

@ since the Aristotelian relations are defined in purely Boolean terms,
the Aristotelian structure of a fragment is entirely determined by its
Boolean structure

e lemma: for any v: F, — F:
if v is a Boolean isomorphism, then ~ is an Aristotelian isomorphism

@ a bitstring semantics for F, is a Boolean algebra isomorphism
B: B — {0,1}", where B is some Boolean algebra that contains F,

(not necessarily the smallest one)

e lemma: every bitstring semantics 5: B — {0,1}" is an Aristotelian
isomorphism
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Example 55

e fragment F of S5-formulas: {Op, Op, O-p, O—p}
o two Boolean algebras that contain F:
e B3, which has atoms Cp, Op A O—p and [I—p (note: B3 = B(F))
e By, which has atoms Cp, p A O—p, —p A Op and Cl—p
@ two bitstring semantics for F:
4] [jg: 183 — {0, 1}3
) 642 184 — {0, 1}4

100 001 1000 0001

op 110 011 1110 0111

contradiction s subcontrariety == == == == confrariety =3 subalternation
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Partitions 56

@ let S be a logical system with Boolean operators and a semantics |-,
and consider F = {¢1,...,om} C Ls

the partition of S induced by F is
Is(F):={a € Ls | a=s o1 A+ AL, and « is S-consistent}

+¢ stands for either v or —p; « should be read up to =g

the formulas o € IIs(F) are called anchor formulas

e in principle, equivalent to a conjunction of m = |F| conjuncts
e can often be simplified, e.g. when —p; =s ¢, for some ¢;, p; € F

@ IIs(F) is a partition of (the class of all models of) S:
o =s (a; A ) for distinct o, a; € TIs(F) (mutually exclusive)
o =5 \VIIs(F) (jointly exhaustive)
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Example 57

o first-order logic (FOL), fragment F := {VzPz, JxPx, —Pa}
@ let's compute IIgoL (F), the partition of FOL induced by F

o there are 271 = 23 = § relevant conjunctions

1. VePx A JxPx A -Pa ~» FOL-inconsistent
2. VePx A JxPx AN —-—Pa ~ VaxPx

3. VePx A —JdxPz A -Pa ~ FOL-inconsistent
4, VePx A —JxPx A -—-Pa ~ FOL-inconsistent
5. =VaPxz A JxPx A -Pa ~ -Pa A JxPx
6. —VzPx A JxPx AN —-—Pa ~ Pa N —VzPx
7. —VxPx AN —-JdzPx A -Pa ~ —dzPx

8. —VaPxr A —-JzPx A —-—-Pa ~» FOL-inconsistent

o llroL (F) = {VzPx, -Pa A 3xzPz, Pa N —VzPz, -3zPx}

KU LEUVEN
Introduction to Logical Geometry — Part 1



Properties of partitions 58

@ given partitions IT; and IIy:
o II; is a refinement of II, iff
for all « € TI; there exists o’ € I, such that s o — o

o the meet of II; and Il is defined as follows:
Iy As Iy == {1 Aya | 71 € II1,y2 € I3, and 41 A Yo is S-consistent}

e note: II; AgIly is the coarsest common refinement of II; and I,

lemma: if 7, U Fy = F, then HS(JT"l) Ns Hs(./."g) = Hs(./r)

o lemma: if 71 C Fy, then IIg(F3) is a refinement of IIs(F7)

given two logics S; and Sy (with the same language £), we say that So
is stronger than S; iff for all p € L: if =5, ¢ then |=s, ¢

lemma: if Sy is stronger than Sy, then
IIs,(F) = {a € IIs, (F) | a is Sg-consistent}
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Partition-based bitstring semantics 59

logic S, fragment F and partition Ig(F) = {aq,...,a,}

lemma: for all p € B(F):

o for all a; € TIs(F) we have =5 a; — ¢ or s a; — —¢, but not both
o p=s V{a ells(F) |frs a = ¢}

for every ¢ € B(F), we define a bitstring 8 (¢) € {0,1}" as follows:

1 if s a; — o,

for each bit position 1 < i < n: [BL (¢)]; :=
each bit positon 1 < i < n 3 ()] {0 P

lemma: for all ¢ € B(F) we have ¢ =5 \/{o; € IIs(F) | [B (p)]; = 1}

relativized disjunctive normal form: ¢ is rewritten as

e a disjunction of anchor formulas, which are themselves
e conjunctions of (possibly negated) formulas +¢; € F
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Partition-based bitstring semantics 60

for every ¢ € B(F), we have bitstring 8L (¢) € {0,1}" = {0, 1}1s(F)l
turn this into a function BSF: B(F) — {0,1}Hs(F)]

theorem: 55 is a bitstring semantics for F

corollary: |B(F)| = ollIs(F)|

corollary: ﬁ{ is an Aristotelian isomorphism

corollary: 3Z is a minimal bitstring semantics for F:

every other bitstring semantics for F is
either a permutation variant of ﬁg:
or makes use of bitstrings of length > |IIs(F)]
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Correlation between fragment size and bitstring length 61

o fragment size m := | F| and bitstring length n := |IIs(F)|

o theorem:
(1) we can bound m in terms of n:  [logy(n)] < m < 27
(2) we can bound n in terms of m: [logs(m)] < n < 2™

(1) and (2) can be seen as each other’s inverses

all these bounds are tight

theorem (special case, but very relevant for logical geometry):
if F only contains S-contingent formulas and is closed under negation:

(1') bound m in terms of n: 2[logy(n)] < m < 2" -2

(2') bound n in terms of m: [logo(m+2)] < n < 22
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The End 62

Thank you!

Questions?

More info: www.logicalgeometry.org
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