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Who are you? 3

what's your academic background?

philosophy
logic
linguistics
mathematics
computer science

...
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Motivating examples 4

logical geometry ∼ the systematic study of Aristotelian diagrams

what are Aristotelian diagrams?

later: precise de�nition
now: some motivating examples

some general trends to pay attention to:

long history, but still used today
applications in logic and philosophy, but also in many other disciplines
not just for teaching purposes, but also in research contexts
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Square of opposition 5

oldest and most well-known example of an Aristotelian diagram

the square of opposition for the categorical statements from syllogistics

relations: Aristotle (4th century BCE)
diagram: Apuleius of Madaura (2nd century CE),

Boethius (5th century CE)
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Thomasin von Zerclaere (1186 � 1238) 6

epic poem: Der Wälsche Gast

visual representation of the seven liberal arts
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Peter Abelard (1079 � 1142) 7

square for the quanti�ers from the categorical statements (all, some, no)

also a square for the dual quanti�ers (both, either, neither)
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Peter of Spain (13th century) 8

squares for the quanti�ers and the modalities
within each vertex: duality behavior

every man runs
no man does not run
not some man does not run
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William of Ockham (1285 � 1347) 9

modal syllogistics: propositions with quanti�ers and modalities

`�gura completa', but also `�gura incompleta'
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John Buridan (1300 � 1358) 10

integrates several squares into one `magna �gura'

for modal syllogistics, but also for other types of propositions
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Nicole Oresme (1323 � 1382) 11

(proto-scienti�c) cosmology: Livre du Ciel et du Monde

an `extended' square: add the conjunction of the two lower corners
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Jacques Lefèvre d'Étaples (1455 � 1536) 12

analogy:

a square for propositions // a square for properties
`cannot be true together' // `cannot be instantiated together'
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Anton Erber (1695 � 1746) 13

squares for quanti�ers, propositional connectives,
modalities, temporal and spatial adverbs
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Richard Whately (1787 � 1863) 14

�In the nineteenth century, the apparently most widely used textbook in
Britain and America� (Parsons, 2017)

usual square for the categorical statements

three types of matter (connection between subject and predicate):
[n]ecessary, [i]mpossible and [c]ontingent
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Gottlob Frege (1848 � 1925) 15

a square of opposition in Begri�schrift notation

note the mistake: `conträr'  `subconträr'
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John Neville Keynes (1852 � 1949) 16

octagon for the categorical statements with subject negation
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20th-century/contemporary philosophers and logicians 17

Ruth Barcan Marcus

Arthur Prior

Hans Reichenbach

Richard Hare

H. L. A. Hart (cf. �gure)

Roderick Chisholm

Ernest Sosa
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Applications beyond logic and philosophy 18

linguistics

semantics (generalized quanti�ers) (Dag Westerståhl)
pragmatics (implicatures) (Laurence Horn)
typology (lexicalization) (Debra Ziegeler)
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Applications beyond logic and philosophy 19

cognitive science
psychology of reasoning (Stephen Newstead, Richard Griggs)
emotions research (Olivier Massin)
neuroscience (Camillo Porcaro et al.)
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Applications beyond logic and philosophy 20

computer science (knowledge representation)

formal concept analysis (Didier Dubois, Henri Prade)
rough set theory (Yiyu Yao, Davide Ciucci)
formal argumentation theory (Leila Amgoud)
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Towards logical geometry 21

Aristotelian diagrams have been used

for a very long time (including today)
in a wide variety of disciplines (not just logic and philosophy)

Aristotelian diagrams constitute a language for a broad
(transdisciplinary and transhistorical) community of researchers
who deal with logical reasoning

logical geometry ∼ the linguistics that systematically studies
logical geometry ∼ the language of Aristotelian diagrams

two fundamental aspects of any language:

syntax: form, representation  `geometry'
semantics: meaning, what is represented  `logical'
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Towards logical geometry 22

perspective shift:

in a typical application:
Aristotelian diagrams are used (= tool)
to analyze some linguistic, logical, conceptual phenomenon (= object)

in logical geometry:
Aristotelian diagrams are themselves the primary objects of study,
analyzed using a variety of tools (bitstring analysis, group theory, etc.)

this has led to an elaborate (and growing) elegant theory
(regardless of the multitude of applications)

double motivation for logical geometry:

Aristotelian diagrams as objects of independent interest
Aristotelian diagrams as a widely-used language
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Broader context 23

other types of logic diagrams:

Hasse diagrams
Euler/Venn diagrams
duality diagrams

since the 1990s: diagrammatic reasoning

two courses at ESSLLI 2017:

Caught in the Spiders' Diagrammatic Reasoning Web � The Euler/Spider
Diagram Family of Formal Reasoning Systems
Picturing Quantum Processes

We provide a self-contained introduction to quantum theory . . . This course is
unique in our use of a diagrammatic language throughout. Far from simple
visual aids, the diagrams we use are mathematical objects in their own right
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Structure of the course 24

1. Basic Concepts and Bitstring Semantics

2. Abstract-Logical Properties of Aristotelian Diagrams, Part I
� Aristotelian, Opposition, Implication and Duality Relations

3. Visual-Geometric Properties of Aristotelian Diagrams
� Informational Equivalence, Symmetry and Distance

4. Abstract-Logical Properties of Aristotelian Diagrams, Part II
� Boolean Structure and Logic-Sensitivity

5. Case Studies and Philosophical Outlook
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Aristotelian relations: informal characterisation 26

two propositions are said to be

contradictory (CD) i� they cannot be true together and
they cannot be false together

contrary (C) i� they cannot be true together but
they can be false together

subcontrary (SC) i� they can be true together but
they cannot be false together

in subalternation (SA) i� the �rst proposition entails the second but
the second doesn't entail the �rst
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Aristotelian relations: model-theoretic characterisation 27

let S be a logical system with

the usual Boolean connectives (∧,∨,¬,→)
a model-theoretic semantics (|=)

two formulas ϕ,ψ ∈ LS are said to be

S-contradictory (CDS) i� |=S ¬(ϕ ∧ ψ) and |=S ¬(¬ϕ ∧ ¬ψ)

S-contrary (CS) i� |=S ¬(ϕ ∧ ψ) and 6|=S ¬(¬ϕ ∧ ¬ψ)

S-subcontrary (SCS) i� 6|=S ¬(ϕ ∧ ψ) and |=S ¬(¬ϕ ∧ ¬ψ)

in S-subalternation (SAS) i� |=S ϕ→ ψ and 6|=S ψ → ϕ

the Aristotelian geometry for S: AGS := {CDS,CS, SCS, SAS}

the Aristotelian relations are de�ned up to logical equivalence:

suppose that ϕ ≡S ϕ
′ and ψ ≡S ψ

′

then for all R ∈ AGS: RS(ϕ,ψ)⇔ RS(ϕ′, ψ′)
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Aristotelian relations: algebraic characterisation 28

let B = 〈B,∧,∨,¬,>,⊥〉 be an arbitrary Boolean algebra

two elements x, y ∈ B are said to be

B-contradictory (CDB) i� x ∧ y = ⊥ and x ∨ y = >
B-contrary (CB) i� x ∧ y = ⊥ and x ∨ y 6= >
B-subcontrary (SCB) i� x ∧ y 6= ⊥ and x ∨ y = >
in B-subalternation (SAB) i� ¬x ∨ y = > and x ∨ ¬y 6= >

the Aristotelian geometry for B: AGB := {CDB,CB,SCB,SAB}

thanks to this abstract characterisation, Aristotelian relations can be
de�ned between formulas/statements and between sets/concepts

cf. Lefèvre d'Étaples's `analogia' between two squares of oppositions
Keynes, 1906: �These seven possible relations between propositions
(taken in pairs) will be found to be precisely analogous to the seven
possible relations between classes (taken in pairs)�
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Aristotelian relations: logical characterisation 29

�rst concrete instance of the algebraic characterisation:
Aristotelian relations in a Lindenbaum-Tarski algebra

S-equivalence classes of formulas: [ϕ]S := {ψ ∈ LS | ϕ ≡S ψ}

let B(S) be the Lindenbaum-Tarski algebra of the logical system S

two equivalence classes [ϕ]S, [ψ]S are said to be

B(S)-contradictory i� [ϕ]S ∧ [ψ]S = ⊥ and [ϕ]S ∨ [ψ]S = >
B(S)-contrary i� [ϕ]S ∧ [ψ]S = ⊥ and [ϕ]S ∨ [ψ]S 6= >
B(S)-subcontrary i� [ϕ]S ∧ [ψ]S 6= ⊥ and [ϕ]S ∨ [ψ]S = >
in B(S)-subalternation i� [¬ϕ]S ∨ [ψ]S = > and [ϕ]S ∨ [¬ψ]S 6= >

this characterisation essentially corresponds to the model-theoretic one:
e.g. ϕ and ψ are S-contrary i� [ϕ]S and [ψ]S are B(S)-contrary
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Aristotelian relations: set-theoretic characterisation 30

second concrete instance of the algebraic characterisation:
Aristotelian relations in a Boolean algebra of sets

let B = 〈B,∩,∪, \, D, ∅〉 be a Boolean algebra of sets

two sets X,Y ∈ B are said to be

B-contradictory i� X ∩ Y = ∅ and X ∪ Y = D

B-contrary i� X ∩ Y = ∅ and X ∪ Y 6= D

B-subcontrary i� X ∩ Y 6= ∅ and X ∪ Y = D

in B-subalternation i� (D\X) ∪ Y = D and X ∪ (D\Y ) 6= D
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Aristotelian relations and unconnectedness 31

informal characterisation:
two propositions ϕ,ψ are said to be unconnected i�

(i) ϕ and ψ can be true together and

(ii) ϕ does not entail ψ and

(iii) ψ does not entail ϕ and

(iv) ϕ and ψ can be false together

together, these four conditions imply that ϕ and ψ do not stand
in any Aristotelian relation:

condition (i) implies that ϕ and ψ are neither CD nor C
condition (ii) implies that there is no SA from ϕ to ψ
condition (iii) implies that there is no SA from ψ to ϕ
condition (iv) implies that ϕ and ψ are neither CD nor SC
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Aristotelian relations and unconnectedness 32

model-theoretic characterisation:
two formulas ϕ,ψ are said to be S-unconnected i�

(i) 6|=S ¬(ϕ ∧ ψ) and

(ii) 6|=S ϕ→ ψ and

(iii) 6|=S ψ → ϕ and

(iv) 6|=S ¬(¬ϕ ∧ ¬ψ)

algebraic characterisation:
two elements x, y ∈ B are said to be B-unconnected i�

(i) ¬x ∧ ¬y 6= ⊥ and

(ii) ¬x ∧ ¬y 6= ⊥ and

(iii) ¬x ∧ ¬y 6= ⊥ and

(iv) ¬x ∧ ¬y 6= ⊥
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Aristotelian relations and unconnectedness 33

�rst concrete instance: Lindenbaum-Tarski algebra:
two equivalence classes [ϕ]S, [ψ]S are said to be B(S)-unconnected i�

(i) [ϕ]S ∧ [ψ]S 6= ⊥ and

(ii) [ϕ]S ∧ [¬ψ]S 6= ⊥ and

(iii) [¬ϕ]S ∧ [ψ]S 6= ⊥ and

(iv) [¬ϕ]S ∧ [¬ψ]S 6= ⊥

second concrete instance: Boolean algebra of sets:
two sets X,Y ∈ B are said to be B-unconnected i�

(i) X ∩ Y 6= ∅ and

(ii) X ∩ (D\Y ) 6= ∅ and

(iii) (D\X) ∩ Y 6= ∅ and

(iv) (D\X) ∩ (D\Y ) 6= ∅
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Bitstrings in logical geometry: the basics 34

bitstrings are �nite sequences of bits (0/1), e.g. 10101011

bitstrings can encode the denotations of formulas or expressions from:

logical systems: e.g. classical propositional logic, �rst-order logic, modal
logic and public announcement logic
lexical �elds: e.g. comparative quanti�cation, subjective quanti�cation,
color terms and set inclusion relations

each bit provides an answer to a meaningful (binary) question
(origin: analysis of generalized quanti�ers as sets of sets)

note:

we use bitstrings to encode formulas, not relations between formulas
if a formula ϕ is encoded by the bitstring b, we write β(ϕ) = b
[b]i denotes the ith bit position of the bitstring b
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Bitstrings in logical geometry: the basics 35

each question concerns a component (point/interval) of a
scalar structure that creates a partition of logical space

application to FOL/GQT: is Q(A,B) true if

A ⊆ B ? yes/no
A * B and A ∩B 6= ∅ ? yes/no
A ∩B = ∅ ? yes/no

examples:
β(all A are B) = 100 = 〈 yes, no, no 〉
β(some but not all A are B) = 010 = 〈 no, yes, no 〉
β(not all A are B) = 011 = 〈 no, yes, yes 〉
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Bitstrings in logical geomery: the basics 36

application to the modal logic S5: is ϕ true if

p is true in all possible worlds? yes/no
p is true in some but not in all possible worlds? yes/no
p is true in no possible worlds? yes/no

examples:
β(♦p) = 110 = 〈 yes, yes, no 〉
β(♦p ∧ ♦¬p) = 010 = 〈 no, yes, no 〉
β(♦¬p) = 011 = 〈 no, yes, yes 〉
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Bitstrings in logical geometry: the basics 37

second application to the modal logic S5: is ϕ true if

p is true in all possible worlds? yes/no
p is true in the actual world but not in all possible worlds? yes/no
p is true in some possible worlds but not in the actual world? yes/no
p is true in no possible worlds? yes/no

examples:
β(♦p) = 1110 = 〈 yes, yes, yes, no 〉
β(♦p ∧ ♦¬p) = 0110 = 〈 no, yes, yes, no 〉
β(♦¬p) = 0111 = 〈 no, yes, yes, yes 〉
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Bitstrings in logical geometry: the basics 38

application to propositional logic: is ϕ true if

p is true and q is true? yes/no
p is true and q is false? yes/no
p is false and q is true? yes/no
p is false and q is false? yes/no

examples:
β(¬p) = 0011 = 〈 no, no, yes, yes 〉
β(p↔ q) = 1001 = 〈 yes, no, no, yes 〉
β(p→ q) = 1011 = 〈 yes, no, yes, yes 〉
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Bitstrings in logical geometry: the basics 39

from 23 = 8 bitstrings of length 3 to 24 = 16 bitstrings of length 4
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Bitstrings in logical geometry: the basics 40

recall: given a logic S, two formulas ϕ,ψ are

S-contradictory (CDS) i� |=S ¬(ϕ ∧ ψ) and |=S ¬(¬ϕ ∧ ¬ψ)

S-contrary (CS) i� |=S ¬(ϕ ∧ ψ) and 6|=S ¬(¬ϕ ∧ ¬ψ)

S-subcontrary (SCS) i� 6|=S ¬(ϕ ∧ ψ) and |=S ¬(¬ϕ ∧ ¬ψ)

in S-subalternation (SAS) i� |=S ϕ→ ψ and 6|=S ψ → ϕ

{0, 1}n is a Boolean algebra, so it can be used to characterise the
Aristotelian relations: two bitstrings b1, b2 of length n are

n-contradictory (CDn) i� b1 ∧ b2 = 0 · · · 0 and b1 ∨ b2 = 1 · · · 1
n-contrary (Cn) i� b1 ∧ b2 = 0 · · · 0 and b1 ∨ b2 6= 1 · · · 1
n-subcontrary (SCn) i� b1 ∧ b2 6= 0 · · · 0 and b1 ∨ b2 = 1 · · · 1
in n-subalternation (SAn) i� b1 ∧ b2 = b1 and b1 ∨ b2 6= b1

ϕ and ψ stand in some Aristotelian relation (de�ned for S) i�
β(ϕ) and β(ψ) stand in that same relation (de�ned for bitstrings)

β maps formulas from S to bitstrings, preserving Aristotelian structure
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Aristotelian diagrams: algebraic characterisation 41

let B = 〈B,∧,∨,¬,>,⊥〉 be an arbitrary Boolean algebra

consider a non-empty fragment F ⊆ B such that

>,⊥ /∈ F
F is closed under B-complementation: if x ∈ F then ¬x ∈ F

an Aristotelian diagram for F in B is a diagram that visualizes an
edge-labeled graph G

the vertices of G are the elements of F
the edges of G are labeled by the relations of AGB between those elements
if x, y ∈ F stand in some Aristotelian relation in B, then this is visualized
according to the code
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Aristotelian diagrams: model-theoretic characterisation 42

let S be an appropriate logical system (Boolean + |=)

consider a non-empty fragment F ⊆ LS such that

every formula ϕ ∈ F is S-contingent: 6|=S ϕ and 6|=S ¬ϕ
F is closed under negation (up to ≡S):
if ϕ ∈ F then ∃ψ ∈ F : ψ ≡S ¬ϕ
the formulas in F are pairwise non-S-equivalent:
if ϕ,ψ ∈ F are distinct, then ϕ 6≡S ψ

an Aristotelian diagram for F in S is a diagram that visualizes an
edge-labeled graph G

the vertices of G are the elements of F
the edges of G are labeled by the relations of AGS between those elements
if ϕ,ψ ∈ F stand in some Aristotelian relation in S, then this is visualized
according to the code
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Examples: Aristotelian PCDs for the modal logic S5 43

PCD = pair of contradictories

a PCD is the smallest possible Aristotelian diagram

no Aristotelian diagrams with a single formula
because of the requirement that they be closed under negation

PCDs are the building blocks for all larger Aristotelian diagrams
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Examples: Aristotelian squares for the modal logic S5 44

classical square degenerate square
square of opposition unconnectedness square

X of opposition

2 PCDs 2 PCDs

2 subalternations (SA)
1 contrariety (C) 4 × unconnectedness (U)

1 subcontrariety (SC)
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Aristotelian hexagons for the modal logic S5 45

Jacoby-Sesmat-Blanché hexagon Sherwood-Czezowski hexagon
JSB hexagon SC hexagon

3 PCDs 3 PCDs

6 subalternations (SA) 6 subalternations (SA)
3 contrarieties (C) 3 contrarieties (C)

3 subcontrarieties (SC) 3 subcontrarieties (SC)
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Aristotelian octagons for the modal logic S5 46

Béziau octagon Buridan octagon

4 PCDs 4 PCDs

10 SAs & 5 Cs & 5 SCs 10 SAs & 5 Cs & 5 SCs
4 × unconnectedness (U) 4 × unconnectedness (U)
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Boolean closure 47

Boolean closure of a fragment F :
the smallest Boolean algebra that contains F
contains all Boolean combinations of formulas from F
notation: B(F)
contains 2n formulas, for some natural number n

Boolean closure of an Aristotelian diagram for F in S:

Aristotelian diagram for B(F) in S
note: Aristotelian diagram, so only S-contingent formulas
contains 2n − 2 formulas, for some natural number n

some examples:

the Boolean closure of a classical square is a JSB hexagon
⇒ 23 − 2 = 6 contingent Boolean combinations
the Boolean closure of a degenerate square is a rhombic dodecahedron
the Boolean closure of an SC hexagon is a rhombic dodecahedron
⇒ 24 − 2 = 14 contingent Boolean combinations
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Boolean closure 48

the Boolean closure of a classical square is a JSB hexagon
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The e�ectiveness of bitstring semantics 49

logical and diagrammatic e�ectiveness � next lectures

linguistic and cognitive e�ectiveness:
bitstrings generate new questions about

the linguistic/cognitive aspects of the expressions they encode
the relative weight/strength of individual bit positions inside bitstrings
the underlying scalar/linear structure of the conceptual domain

edges versus center in bitstrings of length 3

bitstrings of length 4 as re�nements/coarsenings of bitstrings of length 3
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Bitstrings: limitations of the informal approach 50

no systematic method for establishing a bitstring semantics
for any fragment F in any logical system S

� �nal part of lecture 1

no good grasp of the intricate interplay between
Aristotelian and Boolean structure

� �rst part of lecture 4

no good grasp of the logic-sensitivity of the Aristotelian relations

� second part of lecture 4

to overcome these limitations: develop more mathematically precise
approach to bitstring semantics
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Bitstring algebra 51

{0, 1}n forms a Boolean algebra (bitstrings of length n)

∧, ∨ and ¬ are de�ned componentwise
top element: 1 · · · 1
bottom element: 0 · · · 0

we can de�ne the Aristotelian relations between bitstrings:
two bitstrings b1, b2 ∈ {0, 1}n are

n-contradictory (CDn) i� b1 ∧ b2 = 0 · · · 0 and b1 ∨ b2 = 1 · · · 1
n-contrary (Cn) i� b1 ∧ b2 = 0 · · · 0 and b1 ∨ b2 6= 1 · · · 1
n-subcontrary (SCn) i� b1 ∧ b2 6= 0 · · · 0 and b1 ∨ b2 = 1 · · · 1
in n-subalternation (SAn) i� b1 ∧ b2 = b1 and b1 ∨ b2 6= b1

the Aristotelian geometry for bitstrings of length n:

AGn := {CDn,Cn, SCn,SAn}
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Aristotelian and Boolean isomorphisms 52

the setup:

logical systems S1,S2 and natural numbers n1, n2
x ∈ {S1, n1} and y ∈ {S2, n2}
Fx is a �nite set of formulas of system x/bitstrings of length x
Fy is a �nite set of formulas of system y/bitstrings of length y

we will de�ne functions from Fx to Fy

this encompasses four cases:

from formulas of S1 to formulas of S2
from formulas of S1 to bitstrings of length n2
from bitstrings of length n1 to formulas of S2
from bitstrings of length n1 to bitstrings of length n2
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Aristotelian and Boolean isomorphisms 53

the setup:

logical systems S1,S2 and natural numbers n1, n2
x ∈ {S1, n1} and y ∈ {S2, n2}
Fx is a �nite set of formulas of system x/bitstrings of length x
Fy is a �nite set of formulas of system y/bitstrings of length y

a bijection γ : Fx → Fy is an Aristotelian isomorphism i� for all
Aristotelian relations Rx ∈ AGx and corresponding Ry ∈ AGy, and for
all ϕ,ψ ∈ Fx, it holds that Rx(ϕ,ψ) i� Ry(γ(ϕ), γ(ψ))

a bijection γ : Fx → Fy is a Boolean isomorphism i� there exists some
Boolean algebra isomorphism f : B(Fx)→ B(Fy) such that γ = f � Fx

(recall that B(F) is the Boolean closure of F)
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Bitstring semantics 54

since the Aristotelian relations are de�ned in purely Boolean terms,
the Aristotelian structure of a fragment is entirely determined by its
Boolean structure

lemma: for any γ : Fx → Fy:
if γ is a Boolean isomorphism, then γ is an Aristotelian isomorphism

a bitstring semantics for Fx is a Boolean algebra isomorphism
β : B→ {0, 1}n, where B is some Boolean algebra that contains Fx

(not necessarily the smallest one)

lemma: every bitstring semantics β : B→ {0, 1}n is an Aristotelian
isomorphism
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Example 55

fragment F of S5-formulas: {�p,♦p,�¬p,♦¬p}
two Boolean algebras that contain F :

B3, which has atoms �p,♦p ∧ ♦¬p and �¬p (note: B3 = B(F))
B4, which has atoms �p, p ∧ ♦¬p,¬p ∧ ♦p and �¬p

two bitstring semantics for F :
β3 : B3 → {0, 1}3
β4 : B4 → {0, 1}4
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Partitions 56

let S be a logical system with Boolean operators and a semantics |=,
and consider F = {ϕ1, . . . , ϕm} ⊆ LS

the partition of S induced by F is

ΠS(F) := {α ∈ LS | α ≡S ±ϕ1 ∧ · · · ∧ ±ϕm, and α is S-consistent}

±ϕ stands for either ϕ or ¬ϕ; α should be read up to ≡S

the formulas α ∈ ΠS(F) are called anchor formulas

in principle, equivalent to a conjunction of m = |F| conjuncts
can often be simpli�ed, e.g. when ¬ϕi ≡S ϕj for some ϕi, ϕj ∈ F

ΠS(F) is a partition of (the class of all models of) S:

|=S ¬(αi ∧ αj) for distinct αi, αj ∈ ΠS(F) (mutually exclusive)
|=S

∨
ΠS(F) (jointly exhaustive)
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Example 57

�rst-order logic (FOL), fragment F := {∀xPx, ∃xPx, ¬Pa}

let's compute ΠFOL(F), the partition of FOL induced by F

there are 2|F| = 23 = 8 relevant conjunctions

1. ∀xPx ∧ ∃xPx ∧ ¬Pa  FOL-inconsistent

2. ∀xPx ∧ ∃xPx ∧ ¬¬Pa  ∀xPx
3. ∀xPx ∧ ¬∃xPx ∧ ¬Pa  FOL-inconsistent

4. ∀xPx ∧ ¬∃xPx ∧ ¬¬Pa  FOL-inconsistent

5. ¬∀xPx ∧ ∃xPx ∧ ¬Pa  ¬Pa ∧ ∃xPx
6. ¬∀xPx ∧ ∃xPx ∧ ¬¬Pa  Pa ∧ ¬∀xPx
7. ¬∀xPx ∧ ¬∃xPx ∧ ¬Pa  ¬∃xPx
8. ¬∀xPx ∧ ¬∃xPx ∧ ¬¬Pa  FOL-inconsistent

ΠFOL(F) = {∀xPx, ¬Pa ∧ ∃xPx, Pa ∧ ¬∀xPx, ¬∃xPx}
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Properties of partitions 58

given partitions Π1 and Π2:

Π1 is a re�nement of Π2 i�
for all α ∈ Π1 there exists α′ ∈ Π2 such that |=S α→ α′

the meet of Π1 and Π2 is de�ned as follows:
Π1 ∧S Π2 := {γ1 ∧ γ2 | γ1 ∈ Π1, γ2 ∈ Π2, and γ1 ∧ γ2 is S-consistent}
note: Π1 ∧S Π2 is the coarsest common re�nement of Π1 and Π2

lemma: if F1 ∪ F2 = F , then ΠS(F1) ∧S ΠS(F2) = ΠS(F)

lemma: if F1 ⊆ F2, then ΠS(F2) is a re�nement of ΠS(F1)

given two logics S1 and S2 (with the same language L), we say that S2

is stronger than S1 i� for all ϕ ∈ L: if |=S1 ϕ then |=S2 ϕ

lemma: if S2 is stronger than S1, then
ΠS2(F) = {α ∈ ΠS1(F) | α is S2-consistent}
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Partition-based bitstring semantics 59

logic S, fragment F and partition ΠS(F) = {α1, . . . , αn}

lemma: for all ϕ ∈ B(F):

for all αi ∈ ΠS(F) we have |=S αi → ϕ or |=S αi → ¬ϕ, but not both
ϕ ≡S

∨
{α ∈ ΠS(F) | |=S α→ ϕ}

for every ϕ ∈ B(F), we de�ne a bitstring βFS (ϕ) ∈ {0, 1}n as follows:

for each bit position 1 ≤ i ≤ n : [βFS (ϕ)]i :=

{
1 if |=S αi → ϕ,

0 if |=S αi → ¬ϕ.

lemma: for all ϕ ∈ B(F) we have ϕ ≡S
∨
{αi ∈ ΠS(F) | [βFS (ϕ)]i = 1}

relativized disjunctive normal form: ϕ is rewritten as

a disjunction of anchor formulas, which are themselves
conjunctions of (possibly negated) formulas ±ϕj ∈ F

Introduction to Logical Geometry � Part 1



Partition-based bitstring semantics 60

for every ϕ ∈ B(F), we have bitstring βFS (ϕ) ∈ {0, 1}n = {0, 1}|ΠS(F)|

turn this into a function βFS : B(F)→ {0, 1}|ΠS(F)|

theorem: βFS is a bitstring semantics for F

corollary: |B(F)| = 2|ΠS(F)|

corollary: βFS is an Aristotelian isomorphism

corollary: βFS is a minimal bitstring semantics for F :

corollary: every other bitstring semantics for F is
corollary: either a permutation variant of βFS
corollary: or makes use of bitstrings of length > |ΠS(F)|
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Correlation between fragment size and bitstring length 61

fragment size m := |F| and bitstring length n := |ΠS(F)|

theorem:

(1) we can bound m in terms of n: dlog2(n)e ≤ m ≤ 2n

(2) we can bound n in terms of m: dlog2(m)e ≤ n ≤ 2m

(1) and (2) can be seen as each other's inverses

all these bounds are tight

theorem (special case, but very relevant for logical geometry):
if F only contains S-contingent formulas and is closed under negation:

(1') bound m in terms of n: 2dlog2(n)e ≤ m ≤ 2n − 2

(2') bound n in terms of m: dlog2(m+ 2)e ≤ n ≤ 2
m
2
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The End 62

Thank you!

Questions?

More info: www.logicalgeometry.org
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