

Introduction to Logical Geometry 1. Basic Concepts and Bitstring Semantics

Lorenz Demey & Hans Smessaert

ESSLLI 2018, Sofia

Practicalities

• lecturers:

• Lorenz Demey

- primary background in logic and philosophy
- Center for Logic and Philosophy of Science, KU Leuven
- http://www.lorenzdemey.eu

Hans Smessaert

- primary background in linguistics
- Research Group Formal and Computational Linguistics, KU Leuven
- http://wwwling.arts.kuleuven.be/ComForT/hsmessaert/

• course website:

- http://logicalgeometry.org/tutorial-esslli2018.htm
- course slides
- background readings

Introduction to Logical Geometry – Part 1

KU LEUV

Who are you?

• what's your academic background?

- philosophy
- logic
- linguistics
- mathematics
- computer science

3

Introduction to Logical Geometry – Part 1

- ullet logical geometry \sim the systematic study of Aristotelian diagrams
- what are Aristotelian diagrams?
 - later: precise definition
 - now: some motivating examples
- some general trends to pay attention to:
 - long history, but still used today
 - applications in logic and philosophy, but also in many other disciplines
 - not just for teaching purposes, but also in research contexts

KU LEU

Square of opposition

- oldest and most well-known example of an Aristotelian diagram
- the square of opposition for the categorical statements from syllogistics
 - relations: Aristotle (4th century BCE)
 - diagram: Apuleius of Madaura (2nd century CE),

Boethius (5th century CE)

Introduction to Logical Geometry – Part 1

KU LEUVE

- epic poem: Der Wälsche Gast
- visual representation of the seven liberal arts

KU LEUVEN

Introduction to Logical Geometry – Part 1

- square for the quantifiers from the categorical statements (all, some, no)
- also a square for the dual quantifiers (both, either, neither)

Sic an dea of labor oil until ? - und le but ranoef maring; ment rabi con duof thetome aglaric accepce aco; fubaline Via; cor cra coore comer. n figlor out: colle ment ictival fubatinal fine codectoria factor uppeltin py fup pound roef at facilide 'neuter currit' 'uterque eorum currit' contrariae

Introduction to Logical Geometry – Part 1

KU LEUV

- squares for the quantifiers and the modalities
- within each vertex: duality behavior
 - every man runs
 - no man does not run
 - not some man does not run

	CONTRARIE	
Non possibile est non esse	Tertius est quarto	Non possibile est esse
Non contingens est non esse	semper contrarius ordo	Non contingens est esse
Impossibile est non esse		Impossibile est esse
Necesse est esse		Necesse est non esse

Introduction to Logical Geometry - Part 1

KU LEUVEN

- modal syllogistics: propositions with quantifiers and modalities
- 'figura completa', but also 'figura incompleta'

Sic igitur per istas propositiones habetur una figura completa habens propositiones contrarias, contradictorias, subalternas et subcontrarias sic dispositas:

Introduction to Logical Geometry – Part 1

KU LEUVEN

John Buridan (1300 - 1358)

- integrates several squares into one 'magna figura'
- for modal syllogistics, but also for other types of propositions

KU LEUVEN

Introduction to Logical Geometry - Part 1

- (proto-scientific) cosmology: Livre du Ciel et du Monde
- an 'extended' square: add the conjunction of the two lower corners

KU LEUVEN

Introduction to Logical Geometry - Part 1

- analogy:
 - a square for propositions // a square for properties
 - 'cannot be true together' // 'cannot be instantiated together'

KU LEUVEN

Introduction to Logical Geometry – Part 1

• squares for quantifiers, propositional connectives, modalities, temporal and spatial adverbs

KU LEUVEN

Introduction to Logical Geometry – Part 1

- "In the nineteenth century, the apparently most widely used textbook in Britain and America" (Parsons, 2017)
- usual square for the categorical statements
- three types of matter (connection between subject and predicate): [n]ecessary, [i]mpossible and [c]ontingent

Introduction to Logical Geometry – Part 1

KU LEU

- a square of opposition in Begriffschrift notation
- note the mistake: 'conträr' ~> 'subconträr'

Introduction to Logical Geometry – Part 1

KU LEUVEN

• octagon for the categorical statements with subject negation

KU LEUVEN

Introduction to Logical Geometry - Part 1

- Ruth Barcan Marcus
- Arthur Prior
- Hans Reichenbach
- Richard Hare
- H. L. A. Hart (cf. figure)
- Roderick Chisholm
- Ernest Sosa

Introduction to Logical Geometry – Part 1

- linguistics
 - semantics (generalized quantifiers)
 - pragmatics (implicatures)
 - typology (lexicalization)

(Dag Westerståhl) (Laurence Horn) (Debra Ziegeler)

KU LEUVEN

On the empty O-corner of the Aristotelian Square: A view from Singapore English

Debra Ziegeler

Université Sorbonne Nouvelle Paris 3, France

Received 25 March 2016; received in revised form 16 March 2017; accepted 18 March 2017 Available online 18 May 2017

Introduction to Logical Geometry - Part 1

- cognitive science
 - psychology of reasoning
 - emotions research
 - neuroscience

(Stephen Newstead, Richard Griggs) (Olivier Massin) (Camillo Porcaro et al.)

Drawing Inferences from Quantified Statements: A Study of the Square of Opposition

Universal vs. particular reasoning: a study with neuroimaging techniques

Introduction to Logical Geometry – Part 1

KU LEUVEN

Applications beyond logic and philosophy

- computer science (knowledge representation)
 - formal concept analysis
 - rough set theory
 - formal argumentation theory

(Didier Dubois, Henri Prade) (Yiyu Yao, Davide Ciucci) (Leila Amgoud)

KU LEUVEN

The Cube of Opposition -A Structure underlying many Knowledge Representation Formalisms

Introduction to Logical Geometry – Part 1

- Aristotelian diagrams have been used
 - for a very long time (including today)
 - in a wide variety of disciplines (not just logic and philosophy)
- Aristotelian diagrams constitute a **language** for a broad (transdisciplinary and transhistorical) community of researchers who deal with logical reasoning
- \bullet logical geometry \sim the linguistics that systematically studies the language of Aristotelian diagrams
- two fundamental aspects of any language:
 - syntax: form, representation
 - semantics: meaning, what is represented

KULE

→ 'logical'

• perspective shift:

- in a typical application:
 - Aristotelian diagrams are used (= tool)
 - to analyze some linguistic, logical, conceptual phenomenon (= object)
- in logical geometry:

Aristotelian diagrams are themselves the primary objects of study, analyzed using a variety of tools (bitstring analysis, group theory, etc.)

- this has led to an elaborate (and growing) **elegant theory** (regardless of the multitude of applications)
- double motivation for logical geometry:
 - Aristotelian diagrams as objects of independent interest
 - Aristotelian diagrams as a widely-used language

KULE

- other types of logic diagrams:
 - Hasse diagrams
 - Euler/Venn diagrams
 - duality diagrams
- since the 1990s: diagrammatic reasoning
- two courses at ESSLLI 2017:
 - Caught in the Spiders' Diagrammatic Reasoning Web The Euler/Spider Diagram Family of Formal Reasoning Systems
 - Picturing Quantum Processes

We provide a self-contained introduction to quantum theory ... This course is unique in our use of a diagrammatic language throughout. Far from simple visual aids, the diagrams we use are mathematical objects in their own right

KU LEL

- 1. Basic Concepts and Bitstring Semantics
- Abstract-Logical Properties of Aristotelian Diagrams, Part I
 Aristotelian, Opposition, Implication and Duality Relations
- Visual-Geometric Properties of Aristotelian Diagrams
 Informational Equivalence, Symmetry and Distance
- 4. Abstract-Logical Properties of Aristotelian Diagrams, Part II
 ^{III} Boolean Structure and Logic-Sensitivity
- 5. Case Studies and Philosophical Outlook

KU LEU

1. Basic Concepts and Bitstring Semantics

- Abstract-Logical Properties of Aristotelian Diagrams, Part I
 Aristotelian, Opposition, Implication and Duality Relations
- Visual-Geometric Properties of Aristotelian Diagrams
 Informational Equivalence, Symmetry and Distance
- 4. Abstract-Logical Properties of Aristotelian Diagrams, Part II
 ^{III} Boolean Structure and Logic-Sensitivity
- 5. Case Studies and Philosophical Outlook

KU LEL

iff

- two propositions are said to be
 - contradictory (CD)
 - contrary (C)
 - subcontrary (SC)
 - in subalternation (SA)

- iff they cannot be true together and they cannot be false together
- iff they cannot be true together but they can be false together
 - iff they can be true together but they cannot be false together
 - the first proposition entails the second but the second doesn't entail the first

Introduction to Logical Geometry – Part 1

KU LEU

Aristotelian relations: model-theoretic characterisation

- let S be a logical system with
 - the usual Boolean connectives $(\wedge,\vee,\neg,\rightarrow)$
 - a model-theoretic semantics (|=)
- ullet two formulas $arphi,\psi\in\mathcal{L}_{\mathsf{S}}$ are said to be

S-contradictory (CD _S)	iff	$\models_{S} \neg(\varphi \wedge \psi)$	and	$\models_{S} \neg (\neg \varphi \land \neg \psi)$
S-contrary $(C_{\rm S})$	iff	$\models_{S} \neg (\varphi \land \psi)$	and	$\not\models_{S} \neg (\neg \varphi \land \neg \psi)$
S-subcontrary (SC _S)	iff	$\not\models_{S} \neg (\varphi \land \psi)$	and	$\models_{S} \neg (\neg \varphi \land \neg \psi)$
in S-subalternation (SA _S)	iff	$\models_{S} \varphi \to \psi$	and	$\not\models_{S} \psi \to \varphi$

- the Aristotelian geometry for S: $\mathcal{AG}_S := \{ CD_S, C_S, SC_S, SA_S \}$
- the Aristotelian relations are defined up to logical equivalence:
 - suppose that $\varphi \equiv_{\mathsf{S}} \varphi'$ and $\psi \equiv_{\mathsf{S}} \psi'$
 - then for all $R \in \mathcal{AG}_{\mathsf{S}}$: $R_{\mathsf{S}}(\varphi, \psi) \Leftrightarrow R_{\mathsf{S}}(\varphi', \psi')$

Introduction to Logical Geometry - Part 1

KU LEU

- let $\mathbb{B} = \langle B, \wedge, \vee, \neg, \top, \bot \rangle$ be an arbitrary **Boolean algebra**
- two elements $x, y \in B$ are said to be

 \mathbb{B} -contradictory ($CD_{\mathbb{R}}$) iff $x \wedge y = \bot$ and $x \lor y = \top$ \mathbb{B} -contrary ($C_{\mathbb{R}}$) iff $x \wedge y = \bot$ and $x \lor y \neq \top$ iff $x \wedge y \neq \bot$ \mathbb{B} -subcontrary (SC_R) and $x \lor y = \top$ iff $\neg x \lor y = \top$ in \mathbb{B} -subalternation (SA_R) and $x \vee \neg y \neq \top$

• the Aristotelian geometry for \mathbb{B} : $\mathcal{AG}_{\mathbb{B}} := \{ CD_{\mathbb{B}}, C_{\mathbb{B}}, SC_{\mathbb{B}}, SA_{\mathbb{B}} \}$

 thanks to this abstract characterisation, Aristotelian relations can be defined between formulas/statements and between sets/concepts

- cf. Lefèvre d'Étaples's 'analogia' between two squares of oppositions
- Keynes, 1906: "These seven possible relations between propositions (taken in pairs) will be found to be precisely analogous to the seven possible relations between *classes* (taken in pairs)"

Introduction to Logical Geometry – Part 1

Aristotelian relations: logical characterisation

- first concrete instance of the algebraic characterisation: Aristotelian relations in a Lindenbaum-Tarski algebra
- S-equivalence classes of formulas: $[\varphi]_{\mathsf{S}} := \{ \psi \in \mathcal{L}_{\mathsf{S}} \mid \varphi \equiv_{\mathsf{S}} \psi \}$
- $\bullet~$ let $\mathbb{B}(\mathsf{S})$ be the Lindenbaum-Tarski algebra of the logical system S
- two equivalence classes $[\varphi]_{\mathsf{S}}, \ [\psi]_{\mathsf{S}}$ are said to be

$\mathbb{B}(S)$ -contradictory	iff	$[\varphi]_{S} \wedge [\psi]_{S} = \bot$	and	$[\varphi]_{S} \vee [\psi]_{S} = \top$
$\mathbb{B}(S)$ -contrary	iff	$[\varphi]_{S} \wedge [\psi]_{S} = \bot$	and	$[\varphi]_{S} \vee [\psi]_{S} \neq \top$
$\mathbb{B}(S)$ -subcontrary	iff	$[\varphi]_{S} \wedge [\psi]_{S} \neq \bot$	and	$[\varphi]_{S} \vee [\psi]_{S} = \top$
in $\mathbb{B}(S)$ -subalternation	iff	$[\neg \varphi]_{S} \vee [\psi]_{S} = \top$	and	$[\varphi]_{S} \vee [\neg \psi]_{S} \neq \top$

• this characterisation essentially corresponds to the model-theoretic one: e.g. φ and ψ are S-contrary iff $[\varphi]_S$ and $[\psi]_S$ are $\mathbb{B}(S)$ -contrary

Introduction to Logical Geometry – Part 1

KU LEUVEN

Aristotelian relations: set-theoretic characterisation

- second concrete instance of the algebraic characterisation: Aristotelian relations in a Boolean algebra of sets
- let $\mathbb{B} = \langle B, \cap, \cup, \backslash, D, \emptyset \rangle$ be a Boolean algebra of sets
- two sets $X, Y \in B$ are said to be

$\mathbb B$ -contradictory	iff	$X \cap Y = \emptyset$	and	$X \cup Y = D$
$\mathbb B$ -contrary	iff	$X\cap Y=\emptyset$	and	$X\cup Y\neq D$
$\mathbb B$ -subcontrary	iff	$X\cap Y\neq \emptyset$	and	$X\cup Y=D$
in \mathbb{B} -subalternation	iff	$(D\backslash X)\cup Y=D$	and	$X \cup (D \backslash Y) \neq D$

Introduction to Logical Geometry – Part 1

KU LEUV

• informal characterisation:

two propositions φ,ψ are said to be ${\bf unconnected}$ iff

(i)	$arphi$ and ψ can be true together	and
(ii)	$arphi$ does not entail ψ	and
(iii)	ψ does not entail $arphi$	and

(iv) φ and ψ can be false together

• together, these four conditions imply that φ and ψ do **not stand** in any Aristotelian relation:

- $\bullet\,$ condition (i) implies that φ and ψ are neither CD nor C
- condition (ii) implies that there is no SA from arphi to ψ
- ullet condition (iii) implies that there is no SA from ψ to arphi
- ullet condition (iv) implies that arphi and ψ are neither CD nor SC

KULE

• model-theoretic characterisation: two formulas φ, ψ are said to be S-**unconnected** iff

(i)	$\not\models_{S} \neg(\varphi \land \psi)$	and
(ii)	$\not\models_{S} \varphi \to \psi$	and
(iii)	$\not\models_{S} \psi \to \varphi$	and
(iv)	$\not\models_{S} \neg (\neg \varphi \land \neg \psi)$	

 \bullet algebraic characterisation: two elements $x,y\in B$ are said to be $\mathbb B\text{-unconnected}$ iff

(i)
$$x \land y \neq \bot$$
 and
(ii) $x \land \neg y \neq \bot$ and
(iii) $\neg x \land y \neq \bot$ and
(iv) $\neg x \land \neg y \neq \bot$

KU LEUVE

 first concrete instance: Lindenbaum-Tarski algebra: two equivalence classes [φ]_S, [ψ]_S are said to be B(S)-unconnected iff

 $\begin{array}{ll} (i) & [\varphi]_{\mathsf{S}} \wedge [\psi]_{\mathsf{S}} \neq \bot & \text{and} \\ (ii) & [\varphi]_{\mathsf{S}} \wedge [\neg \psi]_{\mathsf{S}} \neq \bot & \text{and} \\ (iii) & [\neg \varphi]_{\mathsf{S}} \wedge [\psi]_{\mathsf{S}} \neq \bot & \text{and} \\ (iv) & [\neg \varphi]_{\mathsf{S}} \wedge [\neg \psi]_{\mathsf{S}} \neq \bot \\ \end{array}$

• second concrete instance: Boolean algebra of sets: two sets $X, Y \in B$ are said to be \mathbb{B} -unconnected iff

 $\begin{array}{ll} ({\rm i}) & X \cap Y \neq \emptyset & {\rm and} \\ ({\rm ii}) & X \cap (D \backslash Y) \neq \emptyset & {\rm and} \\ ({\rm iii}) & (D \backslash X) \cap Y \neq \emptyset & {\rm and} \\ ({\rm iv}) & (D \backslash X) \cap (D \backslash Y) \neq \emptyset \end{array}$

KU LEU

- bitstrings are finite sequences of bits (0/1), e.g. 10101011
- bitstrings can encode the denotations of formulas or expressions from:
 - logical systems: e.g. classical propositional logic, first-order logic, modal logic and public announcement logic
 - lexical fields: e.g. comparative quantification, subjective quantification, color terms and set inclusion relations
- each bit provides an **answer** to a meaningful (binary) **question** (origin: analysis of generalized quantifiers as sets of sets)
- note:
 - we use bitstrings to encode formulas, not relations between formulas
 - if a formula φ is encoded by the bitstring b, we write $\beta(\varphi) = b$
 - $[b]_i$ denotes the i^{th} bit position of the bitstring b

Introduction to Logical Geometry – Part 1

KU LEU

• each question concerns a component (point/interval) of a scalar structure that creates a partition of logical space

• application to FOL/GQT: is Q(A, B) true if

 $A \subseteq B$? yes/no $A \not\subseteq B$ and $A \cap B \neq \emptyset$? yes/no $A \cap B = \emptyset$? yes/no

= 100 $\ =$ \langle yes, no, no angle β (all A are B) • examples: β (some but not all A are B) = 010 = \langle no, yes, no \rangle $= 011 = \langle no, yes, yes \rangle$ β (not all A are B)

35

KULEU

Introduction to Logical Geometry - Part 1

Bitstrings in logical geomery: the basics

- \bullet application to the modal logic S5: is φ true if
 - p is true in all possible worlds?yes/nop is true in some but not in all possible worlds?yes/nop is true in no possible worlds?yes/no

$$\begin{array}{lll} & \beta(\Diamond p) & = 110 & = \langle \text{ yes, yes, no} \rangle \\ \bullet \text{ examples:} & \beta(\Diamond p \land \Diamond \neg p) & = 010 & = \langle \text{ no, yes, no} \rangle \\ & \beta(\Diamond \neg p) & = 011 & = \langle \text{ no, yes, yes} \rangle \end{array}$$

Modal Logic	GQT	level 1/0	level 2/3	GQT	Modal Logic
necessary $(\Box p)$	all	100	011	not all	not necessary $(\neg \Box p)$
<i>contingent</i> $(\neg \Box p \land \Diamond p)$	some but not all	010	101	no or all	<i>not contingent</i> $(\Box p \lor \neg \Diamond p)$
impossible $(\neg \Diamond p)$	no	001	110	some	possible $(\Diamond p)$
<i>contradiction</i> ($\Box p \land \neg \Box p$)	some and no	000	111	some or no	tautology $(\Box p \lor \neg \Box p)$

KU LEUVEN

Introduction to Logical Geometry – Part 1

• second application to the modal logic S5: is φ true if

p is true in all possible worlds? p is true in the actual world but not in all possible worlds? p is true in some possible worlds but not in the actual world? p is true in no possible worlds? yes/no yes/no yes/no yes/no

• examples

$$\begin{array}{lll} \beta(\Diamond p) &= 1110 &= \langle \text{ yes, yes, yes, no } \rangle \\ \text{s:} & \beta(\Diamond p \land \Diamond \neg p) &= 0110 &= \langle \text{ no, yes, yes, no } \rangle \\ & \beta(\Diamond \neg p) &= 0111 &= \langle \text{ no, yes, yes, yes, yes} \rangle \end{array}$$

Introduction to Logical Geometry – Part 1

KU LEUVEN

 \bullet application to propositional logic: is φ true if

p is true and q is true?yes/nop is true and q is false?yes/nop is false and q is true?yes/nop is false and q is false?yes/no

• examples:
$$\begin{array}{ll} \beta(\neg p) &= 0011 &= \langle \text{ no, no, yes, yes} \rangle \\ \beta(p \leftrightarrow q) &= 1001 &= \langle \text{ yes, no, no, yes} \rangle \\ \beta(p \rightarrow q) &= 1011 &= \langle \text{ yes, no, yes, yes} \rangle \end{array}$$

Introduction to Logical Geometry – Part 1

KUL

Bitstrings in logical geometry: the basics

from $2^3 = 8$ bitstrings of length 3 to $2^4 = 16$ bitstrings of length 4

Modal Logic S5	Propositional Logic	bitstrings level 1	bitstrings level 3	Propositional Logic	Modal Logic S5
$\Box p$	$p \wedge q$	1000	0111	$\neg (p \land q)$	$\neg \Box p$
$\neg \Box p \wedge p$	$\neg (p \rightarrow q)$	0100	1011	$p \rightarrow q$	$\Box p \lor \neg p$
$\Diamond p \wedge \neg p$	$\neg (p \leftarrow q)$	0010	1101	$p \leftarrow q$	$\neg \Diamond p \lor p$
$\neg \Diamond p$	$\neg (p \lor q)$	0001	1110	$p \lor q$	$\Diamond p$

Modal Logic S5	Propositional Logic	bitstrings level 2/0	bitstrings level 2/4	Propositional Logic	Modal Logic S5
p	р	1100	0011	$\neg p$	$\neg p$
$\Box p \lor (\Diamond p \land \neg p)$	q	1010	0101	$\neg q$	$\neg \Diamond p \lor (\neg \Box p \land p)$
$\Box p \lor \neg \Diamond p$	$p \leftrightarrow q$	1001	0110	$\neg(p \leftrightarrow q)$	$\neg \Box p \land \Diamond p$
$\Box p \land \neg \Box p$	$p \wedge \neg p$	0000	1111	$p \lor \neg p$	$\Box p \lor \neg \Box p$

Introduction to Logical Geometry – Part 1

KU LEUVEN

 \bullet recall: given a logic S, two formulas φ,ψ are

S-contradictory (CD _S)	iff	$\models_{S} \neg(\varphi \land \psi)$	and	$\models_{S} \neg (\neg \varphi \land \neg \psi)$
S-contrary (C _S)	iff	$\models_{S} \neg(\varphi \land \psi)$	and	$\not\models_{S} \neg (\neg \varphi \land \neg \psi)$
S-subcontrary (SC _S)	iff	$\not\models_{S} \neg (\varphi \land \psi)$	and	$\models_{S} \neg (\neg \varphi \land \neg \psi)$
in S- <i>subalternation</i> (SA _S)	iff	$\models_{S} \varphi \to \psi$	and	$\not\models_{S} \psi \to \varphi$

- $\{0,1\}^n$ is a Boolean algebra, so it can be used to characterise the Aristotelian relations: two **bitstrings** b_1, b_2 of length n are *n*-contradictory (CD_n) iff $b_1 \wedge b_2 = 0 \cdots 0$ and $b_1 \vee b_2 = 1 \cdots 1$ *n*-contrary (C_n) iff $b_1 \wedge b_2 = 0 \cdots 0$ and $b_1 \vee b_2 \neq 1 \cdots 1$ *n*-subcontrary (SC_n) iff $b_1 \wedge b_2 \neq 0 \cdots 0$ and $b_1 \vee b_2 = 1 \cdots 1$ in *n*-subalternation (SA_n) iff $b_1 \wedge b_2 = b_1$ and $b_1 \vee b_2 \neq b_1$
- φ and ψ stand in some Aristotelian relation (defined for S) iff $\beta(\varphi)$ and $\beta(\psi)$ stand in that same relation (defined for bitstrings)
- ullet eta maps formulas from S to bitstrings, preserving Aristotelian structure

Introduction to Logical Geometry – Part 1

KU LEUVEN

- $\bullet~$ let $\mathbb{B}=\langle B,\wedge,\vee,\neg,\top,\bot\rangle$ be an arbitrary Boolean algebra
- ullet consider a non-empty fragment $\mathcal{F}\subseteq B$ such that
 - $\bullet \ \top, \bot \notin \mathcal{F}$
 - \mathcal{F} is closed under \mathbb{B} -complementation: if $x \in \mathcal{F}$ then $\neg x \in \mathcal{F}$
- \bullet an Aristotelian diagram for ${\cal F}$ in ${\Bbb B}$ is a diagram that visualizes an edge-labeled graph ${\cal G}$
 - $\bullet\,$ the vertices of ${\cal G}$ are the elements of ${\cal F}$
 - $\bullet\,$ the edges of ${\cal G}$ are labeled by the relations of ${\cal AG}_{\mathbb B}$ between those elements
 - if $x, y \in \mathcal{F}$ stand in some Aristotelian relation in \mathbb{B} , then this is visualized according to the code

Introduction to Logical Geometry – Part 1

KU LEU

Aristotelian diagrams: model-theoretic characterisation

- let S be an appropriate logical system (Boolean $+ \models$)
- \bullet consider a non-empty fragment $\mathcal{F}\subseteq\mathcal{L}_{\mathsf{S}}$ such that
 - every formula $\varphi \in \mathcal{F}$ is S-contingent: $\not\models_{\mathsf{S}} \varphi$ and $\not\models_{\mathsf{S}} \neg \varphi$
 - *F* is closed under negation (up to ≡_S):
 if φ ∈ *F* then ∃ψ ∈ *F* : ψ ≡_S ¬φ
 - the formulas in *F* are pairwise non-S-equivalent: if φ, ψ ∈ *F* are distinct, then φ ≢_S ψ
- \bullet an $Aristotelian~diagram~for~{\cal F}$ in S is a diagram that visualizes an edge-labeled graph ${\cal G}$
 - $\bullet\,$ the vertices of ${\cal G}$ are the elements of ${\cal F}$
 - $\bullet\,$ the edges of ${\cal G}$ are labeled by the relations of ${\cal AG}_{\sf S}$ between those elements
 - if $\varphi, \psi \in \mathcal{F}$ stand in some Aristotelian relation in S, then this is visualized according to the code

Introduction to Logical Geometry – Part 1

KU LEU

• PCD = pair of contradictories

• a PCD is the smallest possible Aristotelian diagram

- no Aristotelian diagrams with a single formula
- because of the requirement that they be closed under negation
- PCDs are the building blocks for all larger Aristotelian diagrams

Introduction to Logical Geometry – Part 1

KU LEUVE

classical square square of opposition degenerate square unconnectedness square X of opposition

2 PCDs

2 subalternations (SA) 1 contrariety (C) 1 subcontrariety (SC)

2 PCDs

 $4 \times \text{unconnectedness}(U)$

Introduction to Logical Geometry – Part 1

44

Jacoby-Sesmat-Blanché hexagonSherwood-Czezowski hexagonJSB hexagonSC hexagon3 PCDs3 PCDs6 subalternations (SA)6 subalternations (SA)3 contrarieties (C)3 contrarieties (C)3 subcontrarieties (SC)3 subcontrarieties (SC)

KU LEUVEN

Introduction to Logical Geometry – Part 1

Aristotelian octagons for the modal logic S5

 $\Box p \lor \neg \Diamond p$ 1001 $\Box p$ $\neg \Diamond p$ 1000 0001 $p \\ 1100$ 0011 1110 0111 $\Diamond p$ 0110 $\Diamond p \land \neg \Box p$ Béziau octagon 4 PCDs 10 SAs & 5 Cs & 5 SCs

 $4 \times \text{unconnectedness}(U)$

KU LEUVEN

Introduction to Logical Geometry – Part 1

Boolean closure

• Boolean closure of a fragment \mathcal{F} :

- \bullet the smallest Boolean algebra that contains ${\cal F}$
- ullet contains all Boolean combinations of formulas from ${\mathcal F}$
- notation: $\mathbb{B}(\mathcal{F})$
- contains 2^n formulas, for some natural number n

\bullet Boolean closure of an Aristotelian diagram for ${\cal F}$ in S:

- \bullet Aristotelian diagram for $\mathbb{B}(\mathcal{F})$ in S
- note: Aristotelian diagram, so only S-contingent formulas
- contains $2^n 2$ formulas, for some natural number n

some examples:

- the Boolean closure of a classical square is a JSB hexagon $\Rightarrow 2^3 2 = 6$ contingent Boolean combinations
- the Boolean closure of a degenerate square is a rhombic dodecahedron
- the Boolean closure of an SC hexagon is a rhombic dodecahedron $\Rightarrow 2^4 2 = 14$ contingent Boolean combinations

Introduction to Logical Geometry – Part 1

KU LEUVE

• the Boolean closure of a classical square is a JSB hexagon

Introduction to Logical Geometry – Part 1

- logical and diagrammatic effectiveness
- linguistic and cognitive effectiveness: bitstrings generate new questions about
 - the linguistic/cognitive aspects of the expressions they encode
 - the relative weight/strength of individual bit positions inside bitstrings
 - the underlying scalar/linear structure of the conceptual domain
- edges versus center in bitstrings of length 3

• bitstrings of length 4 as refinements/coarsenings of bitstrings of length 3

Introduction to Logical Geometry – Part 1

next lectures

Bitstrings: limitations of the informal approach

- no systematic method for establishing a bitstring semantics for any fragment *F* in any logical system S
 Final part of lecture 1
- no good grasp of the intricate interplay between Aristotelian and Boolean structure
 First part of lecture 4
- no good grasp of the logic-sensitivity of the Aristotelian relations
 second part of lecture 4
- to overcome these limitations: develop more mathematically precise approach to bitstring semantics

KULE

Bitstring algebra

- $\{0,1\}^n$ forms a Boolean algebra (bitstrings of length n)
 - $\bullet~\wedge,~\vee~\text{and}~\neg~\text{are defined componentwise}$
 - \bullet top element: $1 \cdots 1$
 - bottom element: $0 \cdots 0$
- \bullet we can define the Aristotelian relations between bitstrings: two bitstrings $b_1,b_2\in\{0,1\}^n$ are

 $\begin{array}{lll} n\text{-contradictory } (\textit{CD}_n) & \text{iff} & b_1 \wedge b_2 = 0 \cdots 0 & \text{and} & b_1 \vee b_2 = 1 \cdots 1 \\ n\text{-contrary } (\textit{C}_n) & \text{iff} & b_1 \wedge b_2 = 0 \cdots 0 & \text{and} & b_1 \vee b_2 \neq 1 \cdots 1 \\ n\text{-subcontrary } (\textit{SC}_n) & \text{iff} & b_1 \wedge b_2 \neq 0 \cdots 0 & \text{and} & b_1 \vee b_2 = 1 \cdots 1 \\ \text{in } n\text{-subalternation } (\textit{SA}_n) & \text{iff} & b_1 \wedge b_2 = b_1 & \text{and} & b_1 \vee b_2 \neq b_1 \end{array}$

• the Aristotelian geometry for bitstrings of length n:

 $\mathcal{AG}_n := \{ CD_n, C_n, SC_n, SA_n \}$

KU LEU

- the setup:
 - ullet logical systems ${\sf S}_1, {\sf S}_2$ and natural numbers n_1, n_2
 - $x \in \{\mathsf{S}_1, n_1\}$ and $y \in \{\mathsf{S}_2, n_2\}$
 - \mathcal{F}_x is a finite set of formulas of system $x/{
 m bitstrings}$ of length x
 - \mathcal{F}_y is a finite set of formulas of system $y/\mathrm{bitstrings}$ of length y
- we will define functions from \mathcal{F}_x to \mathcal{F}_y
- this encompasses four cases:
 - $\bullet\,$ from formulas of ${\sf S}_1$ to formulas of ${\sf S}_2$
 - from formulas of S_1 to bitstrings of length n_2
 - ullet from bitstrings of length n_1 to formulas of S $_2$
 - from bitstrings of length n_1 to bitstrings of length n_2

KULEU

- the setup:
 - ullet logical systems ${\sf S}_1,{\sf S}_2$ and natural numbers n_1,n_2
 - $x \in \{\mathsf{S}_1, n_1\}$ and $y \in \{\mathsf{S}_2, n_2\}$
 - \mathcal{F}_x is a finite set of formulas of system $x/{ ext{bitstrings}}$ of length x
 - \mathcal{F}_y is a finite set of formulas of system $y/{
 m bitstrings}$ of length y
- a bijection $\gamma \colon \mathcal{F}_x \to \mathcal{F}_y$ is an **Aristotelian isomorphism** iff for all Aristotelian relations $R_x \in \mathcal{AG}_x$ and corresponding $R_y \in \mathcal{AG}_y$, and for all $\varphi, \psi \in \mathcal{F}_x$, it holds that $R_x(\varphi, \psi)$ iff $R_y(\gamma(\varphi), \gamma(\psi))$
- a bijection $\gamma \colon \mathcal{F}_x \to \mathcal{F}_y$ is a **Boolean isomorphism** iff there exists some Boolean algebra isomorphism $f \colon \mathbb{B}(\mathcal{F}_x) \to \mathbb{B}(\mathcal{F}_y)$ such that $\gamma = f \upharpoonright \mathcal{F}_x$

(recall that $\mathbb{B}(\mathcal{F})$ is the Boolean closure of \mathcal{F})

KU LEU

- since the Aristotelian relations are defined in purely Boolean terms, the Aristotelian structure of a fragment is entirely determined by its Boolean structure
- lemma: for any $\gamma \colon \mathcal{F}_x \to \mathcal{F}_y$: if γ is a Boolean isomorphism, then γ is an Aristotelian isomorphism
- a bitstring semantics for *F_x* is a Boolean algebra isomorphism
 β: B → {0,1}ⁿ, where B is some Boolean algebra that contains *F_x* (not necessarily the smallest one)
- \bullet lemma: every bitstring semantics $\beta\colon \mathbb{B}\to \{0,1\}^n$ is an Aristotelian isomorphism

KULE

Example

• fragment \mathcal{F} of S5-formulas: $\{\Box p, \Diamond p, \Box \neg p, \Diamond \neg p\}$

ullet two Boolean algebras that contain \mathcal{F} :

- \mathbb{B}_3 , which has atoms $\Box p, \Diamond p \land \Diamond \neg p$ and $\Box \neg p$ (note: $\mathbb{B}_3 = \mathbb{B}(\mathcal{F})$)
- \mathbb{B}_4 , which has atoms $\Box p, p \land \Diamond \neg p, \neg p \land \Diamond p$ and $\Box \neg p$
- two bitstring semantics for \mathcal{F} :
 - $\beta_3 \colon \mathbb{B}_3 \to \{0,1\}^3$
 - $\beta_4 \colon \mathbb{B}_4 \to \{0,1\}^4$

Partitions

- let S be a logical system with Boolean operators and a semantics \models , and consider $\mathcal{F} = \{\varphi_1, \dots, \varphi_m\} \subseteq \mathcal{L}_S$
- the partition of S induced by \mathcal{F} is $\Pi_{\mathsf{S}}(\mathcal{F}) := \{ \alpha \in \mathcal{L}_{\mathsf{S}} \mid \alpha \equiv_{\mathsf{S}} \pm \varphi_1 \wedge \dots \wedge \pm \varphi_m, \text{ and } \alpha \text{ is S-consistent} \}$
- $\pm \varphi$ stands for either φ or $\neg \varphi$; α should be read up to \equiv_{S}
- the formulas $\alpha \in \Pi_{\mathsf{S}}(\mathcal{F})$ are called **anchor formulas**
 - in principle, equivalent to a conjunction of $m = |\mathcal{F}|$ conjuncts
 - can often be simplified, e.g. when $\neg \varphi_i \equiv_{\mathsf{S}} \varphi_j$ for some $\varphi_i, \varphi_j \in \mathcal{F}$
- $\Pi_{\mathsf{S}}(\mathcal{F})$ is a **partition** of (the class of all models of) S:
 - $\models_{\mathsf{S}} \neg (\alpha_i \land \alpha_j)$ for distinct $\alpha_i, \alpha_j \in \Pi_{\mathsf{S}}(\mathcal{F})$
 - $\models_{\mathsf{S}} \bigvee \Pi_{\mathsf{S}}(\mathcal{F})$

(mutually exclusive) (jointly exhaustive)

KU LEUVEN

Introduction to Logical Geometry – Part 1

Example

- first-order logic (FOL), fragment $\mathcal{F} := \{ \forall x P x, \exists x P x, \neg P a \}$
- \bullet let's compute $\Pi_{\text{FOL}}(\mathcal{F}),$ the partition of FOL induced by \mathcal{F}
- there are $2^{|\mathcal{F}|} = 2^3 = 8$ relevant conjunctions

1.	$\forall x P x$	\wedge	$\exists x P x$	\wedge	$\neg Pa$	\rightsquigarrow	FOL-inconsistent
2.	$\forall x P x$	\wedge	$\exists x P x$	\wedge	$\neg \neg Pa$	$\sim \rightarrow$	$\forall x P x$
3.	$\forall x P x$	\wedge	$\neg \exists x P x$	\wedge	$\neg Pa$	\rightsquigarrow	FOL-inconsistent
4.	$\forall x P x$	\wedge	$\neg \exists x P x$	\wedge	$\neg \neg Pa$	\rightsquigarrow	FOL-inconsistent
5.	$\neg \forall x P x$	\wedge	$\exists x P x$	\wedge	$\neg Pa$	\rightsquigarrow	$\neg Pa \land \exists x Px$
6.	$\neg \forall x P x$	\wedge	$\exists x P x$	\wedge	$\neg \neg Pa$	\rightsquigarrow	$Pa \land \neg \forall x Px$
7.	$\neg \forall x P x$	\wedge	$\neg \exists x P x$	\wedge	$\neg Pa$	\rightsquigarrow	$\neg \exists x P x$
8.	$\neg \forall x P x$	\wedge	$\neg \exists x P x$	\wedge	$\neg \neg Pa$	$\sim \rightarrow$	FOL-inconsistent

• $\Pi_{\mathsf{FOL}}(\mathcal{F}) = \{ \forall x P x, \neg P a \land \exists x P x, P a \land \neg \forall x P x, \neg \exists x P x \}$

Introduction to Logical Geometry – Part 1

KU LEUVEN

- given partitions Π_1 and Π_2 :
 - Π_1 is a **refinement** of Π_2 iff for all $\alpha \in \Pi_1$ there exists $\alpha' \in \Pi_2$ such that $\models_{\mathsf{S}} \alpha \to \alpha'$
 - the **meet** of Π_1 and Π_2 is defined as follows: $\Pi_1 \wedge_{\mathsf{S}} \Pi_2 := \{\gamma_1 \wedge \gamma_2 \mid \gamma_1 \in \Pi_1, \gamma_2 \in \Pi_2, \text{ and } \gamma_1 \wedge \gamma_2 \text{ is S-consistent} \}$
 - $\bullet\,$ note: $\Pi_1 \wedge_{\mathsf{S}} \Pi_2$ is the coarsest common refinement of Π_1 and Π_2
- lemma: if $\mathcal{F}_1 \cup \mathcal{F}_2 = \mathcal{F}$, then $\Pi_{\mathsf{S}}(\mathcal{F}_1) \wedge_{\mathsf{S}} \Pi_{\mathsf{S}}(\mathcal{F}_2) = \Pi_{\mathsf{S}}(\mathcal{F})$
- lemma: if $\mathcal{F}_1 \subseteq \mathcal{F}_2$, then $\Pi_{\mathsf{S}}(\mathcal{F}_2)$ is a refinement of $\Pi_{\mathsf{S}}(\mathcal{F}_1)$
- given two logics S₁ and S₂ (with the same language L), we say that S₂ is stronger than S₁ iff for all φ ∈ L: if ⊨_{S1} φ then ⊨_{S2} φ

• lemma: if S₂ is stronger than S₁, then $\Pi_{S_2}(\mathcal{F}) = \{ \alpha \in \Pi_{S_1}(\mathcal{F}) \mid \alpha \text{ is } S_2\text{-consistent} \}$

Introduction to Logical Geometry – Part 1

KU LEU

- logic S, fragment \mathcal{F} and partition $\Pi_{\mathsf{S}}(\mathcal{F}) = \{\alpha_1, \dots, \alpha_n\}$
- lemma: for all $\varphi \in \mathbb{B}(\mathcal{F})$:
 - for all $\alpha_i \in \Pi_{\mathsf{S}}(\mathcal{F})$ we have $\models_{\mathsf{S}} \alpha_i \to \varphi$ or $\models_{\mathsf{S}} \alpha_i \to \neg \varphi$, but not both
 - $\varphi \equiv_{\mathsf{S}} \bigvee \{ \alpha \in \Pi_{\mathsf{S}}(\mathcal{F}) \mid \models_{\mathsf{S}} \alpha \to \varphi \}$

• for every $\varphi \in \mathbb{B}(\mathcal{F})$, we define a bitstring $\beta_{\mathsf{S}}^{\mathcal{F}}(\varphi) \in \{0,1\}^n$ as follows:

for each bit position
$$1 \le i \le n : [\beta_{\mathsf{S}}^{\mathcal{F}}(\varphi)]_i := \begin{cases} 1 & \text{if } \models_{\mathsf{S}} \alpha_i \to \varphi, \\ 0 & \text{if } \models_{\mathsf{S}} \alpha_i \to \neg \varphi. \end{cases}$$

- lemma: for all $\varphi \in \mathbb{B}(\mathcal{F})$ we have $\varphi \equiv_{\mathsf{S}} \bigvee \{ \alpha_i \in \Pi_{\mathsf{S}}(\mathcal{F}) \mid [\beta_{\mathsf{S}}^{\mathcal{F}}(\varphi)]_i = 1 \}$
- ullet relativized disjunctive normal form: φ is rewritten as
 - a disjunction of anchor formulas, which are themselves
 - ullet conjunctions of (possibly negated) formulas $\pm arphi_j \in \mathcal{F}$

Introduction to Logical Geometry - Part 1

KU LEUV

- for every $\varphi \in \mathbb{B}(\mathcal{F})$, we have bitstring $\beta_{\mathsf{S}}^{\mathcal{F}}(\varphi) \in \{0,1\}^n = \{0,1\}^{|\Pi_{\mathsf{S}}(\mathcal{F})|}$
- turn this into a function $\beta_{\mathsf{S}}^{\mathcal{F}} \colon \mathbb{B}(\mathcal{F}) \to \{0,1\}^{|\Pi_{\mathsf{S}}(\mathcal{F})|}$
- theorem: $\beta_S^{\mathcal{F}}$ is a bitstring semantics for \mathcal{F}
- corollary: $|\mathbb{B}(\mathcal{F})| = 2^{|\Pi_{\mathsf{S}}(\mathcal{F})|}$
- \bullet corollary: $\beta_{\mathsf{S}}^{\mathcal{F}}$ is an Aristotelian isomorphism
- corollary: $\beta_{S}^{\mathcal{F}}$ is a minimal bitstring semantics for \mathcal{F} : every other bitstring semantics for \mathcal{F} is either a permutation variant of $\beta_{S}^{\mathcal{F}}$ or makes use of bitstrings of length $> |\Pi_{S}(\mathcal{F})|$

KULE

- \bullet fragment size $m:=|\mathcal{F}|$ and bitstring length $n:=|\Pi_\mathsf{S}(\mathcal{F})|$
- theorem:
 - (1) we can bound m in terms of n: $\lceil \log_2(n) \rceil \leq m \leq 2^n$ (2) we can bound n in terms of m: $\lceil \log_2(m) \rceil \leq n \leq 2^m$
- (1) and (2) can be seen as each other's inverses
- all these bounds are tight
- theorem (special case, but very relevant for logical geometry): if *F* only contains S-contingent formulas and is closed under negation:
 - (1') bound m in terms of n: $2\lceil \log_2(n) \rceil \leq m \leq 2^n 2$ (2') bound n in terms of m: $\lceil \log_2(m+2) \rceil \leq n \leq 2^{\frac{m}{2}}$

Introduction to Logical Geometry – Part 1

KU LEUVE

Thank you!

Questions?

More info: www.logicalgeometry.org

Introduction to Logical Geometry – Part 1

KU LEUVEN