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Structure of the course 2

1. Basic Concepts and Bitstring Semantics

2. Abstract-Logical Properties of Aristotelian Diagrams, Part |
IS" Aristotelian, Opposition, Implication and Duality Relations

3. Visual-Geometric Properties of Aristotelian Diagrams
IS Informational Equivalence, Symmetry and Distance

4. Abstract-Logical Properties of Aristotelian Diagrams, Part I
5" Boolean Structure and Logic-Sensitivity

5. Case Studies and Philosophical Qutlook
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The square of opposition 3

@ recall the Aristotelian geometry AGs = {CDs, Cs, SCs, SAs}
(relative to an appropriate logical system S)

@ ¢ and © are said to be
S-contradictory (CDs) iff Es-(pAyY) and s —(—p A )
S-contrary (Cs) iff Es-(pAY) and s —(—p A )

S-subcontrary (SCs) iff s (e AY) and s (—p A )
in S-subalternation (SAs) iff s — ¢ and s —p

o Aristotelian square of opposition: 4 propositions + the Aristotelian
relations holding between them
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Generalizations of the Aristotelian square 4

o throughout history: several proposals to extend the square of opposition

e more propositions, more relations
o larger and more complex diagrams
e hexagons, octagons, cubes and other three-dimensional figures

o cf. the motivating examples from lecture 1

opvo-p
op ><D—'p ap op
Op ——— O-p op 0-p

N
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The success of the Aristotelian square 5

@ the square and its extensions: various types of hexagons, octagons, etc.
@ the extensions are very interesting

o well-motivated (propositional logic, modal logic S5)
o throughout history (William of Sherwood, John Buridan, John N. Keynes)
o interrelations (e.g. JSB hexagon is Boolean closure of classical square)

@ yet there is a stunning discrepancy:

o (nearly) all logicians know about the Aristotelian square of opposition
o (nearly) no logicians know about the other Aristotelian diagrams

@ our explanation: “the Aristotelian square is very informative”

e this claim sounds intuitive, but is also vague
o we will provide a precise and well-motivated framework

KU LEUVEN

ion to Logical Geometry — Part 2



Problems with the Aristotelian geometry 6

@ recall the Aristotelian geometry AGs: ¢ and 1) are said to be

S-contradictory (CDs) iff Es—(pAY) and Es —(—p A )
S-contrary (Cs) iff s —(pAY) and s —(—p A )
S-subcontrary (SCs) iff s (e AY) and s —(—p A )
in S-subalternation (SAs) iff FEs¢ — ¢ and fs i — @

@ problems with the relations of AGs:

o not mutually exclusive: e.g. | and p are contrary and subaltern in CPL
(lemma: if ¢, are contingent, they stand in at most one Arist. relation)

e not exhaustive: e.g. p and Op A O—p are in no Arist. relation at all in S5
(lemma: if ¢ is contingent, then ¢ stands in no Arist. relation to itself)

e conceptual confusion: can be true/false together vs. truth propagation

> ‘together’ ~» symmetrical relations (undirected)
> ‘propagation’ ~» asymmetrical relations (directed)
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The opposition geometry 7

@ replace subalternation with ‘non-contradiction’

@ two formulas ¢ and v are said to be
S-contradictory (CDs) iff Es-(pAvY) and s (- A -)
S-contrary (Cs) iff Es—(eAy) and s (= A )
S-subcontrary (SCs) iff s a(eAyY) and s (- A )
S-non-contradictory (NCDs) iff  Fss =(p A1) and s =(—¢ A =)
e the opposition geometry for S: OGs := {CDs, Cs, SCs, NCDs }
e Carnapian state descriptions (‘rows 1 and 4 of a truth table’):
o Mi(p ) =AY (note: ‘symmetry’ between
o Xy(p,h) =N conjuncts of 3 and X,)
@ OGs is defined of terms =1 and =34
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The implication geometry

and
and
and
and

subalternation: truth propagation ‘from left to right’ ~~ left-implication

s —
s — ¢
s —

s b — @

°
@ vary the ‘direction’ of truth propagation
@ two formulas ¢ and v are said to be in

S-bi-implication (Bls) iff Esp—9

S-left-implication (LIs) iff Ese—1

S-right-implication (RIs) iff s @ — 1

S-non-implication (Nls)  iff  Fs @ — 1
o the implication geometry for S: ZGs := {Bls, Lls, Rls, Nis}
°

o Yo(p,¥) = p At
o X3(p,¢) == A9

@ ZGs is defined of terms —Y9 and —X3

Introduction to Logical Geometry — Part 2

Carnapian state descriptions (‘rows 2 and 3 of a truth table’):

(note: ‘asymmetry’ between
conjuncts of X5 and 33)
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Motivating the new geometries, |

two new geometries: opposition geometry and implication geometry

together, they solve the problems of the Aristotelian geometry

the relations of OGs are mutually exclusive and jointly exhaustive:
each pair of formulas stands in exactly one opposition relation

the relations of ZGg are mutually exclusive and jointly exhaustive:
each pair of formulas stands in exactly one implication relation

no longer conceptual confusion:

o OGs is uniformly defined in terms of being able to be true/false together
(cf. the symmetrical state descriptions 3; and 3,)

e 7ZGs is uniformly defined in terms of truth propagation
(cf. the asymmetrical state descriptions 3o and X3)

KU LEUVEN
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Motivating the new geometries, || 10

o clear link with Correia (2012):
two distinct philosophical traditions in interpreting the square:

e square as a theory of negation commentaries on De Interpretatione
e square as a theory of consequence commentaries on Prior Analytics

@ terminological remark:

e ‘square of opposition’, ‘hexagon of opposition’, ‘cube of opposition’
e misnomer: exclusive focus on OGs, while ignoring ZGs

e more appropriate terminology: 'Aristotelian square’ etc.

e concrete examples from the literature:
> ‘square of opposition and equipollence’ (John Mikhail, 2007)
» ‘square of implication and opposition’ (W. E. Johnson, 1922)
> ‘octagon of implication and opposition’ (W. E. Johnson, 1922)
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Motivating the new geometries, Il 11

@ opposition and implication geometry are conceptually independent
yet there's a clear relationship between them (symmetry breaking):

CDs(p,v) < Bls(p, )

CS(SOaw) g LIS( ,—Vg[})
5Cs(p,) < Ris(p, )
NCDS(%%ZJ) g NIS(@a _'77[))

@ both geometries are also internally structured:

CDs(p,y) &  CDs(—p, ) Bls(p,1) < Bls(—p, )
CS(QOJ?Z}) <~ SCS(_'@v _'7/}) LIS(SDJZJ) A RIS(_‘@v_' )
5Cs(p,) & Cs(me, ) Ris(p,¢) < Lls(—p, )
NCDS(@vw) <~ NCDS(TOWT/)) /V/S(SOJZJ) <~ NIS(_'907 _‘770)

KU LEUVEN
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Motivating the new geometries, IV 12

@ given ¢, 1), we define a binary, truth-functional connective
O(wﬂ/}) - (017 02,03, 04) € {Oa 1}4:
e ¢, stand in exactly one opposition relation
. 0 if Es%(p,
for i = 1,4, define o; := I =s ~Xi(pv)
1 if %S _‘Zi((pvw)
e ¢, stand in exactly one implication relation

for i = 2.3, define o, .= 40 1T =5 Xy, 0)
1 if %S _‘ZL(QO,Q/))

o theorem: for all ¢, 1, it holds that |= ¢ o(#¥) ¢
o eg.: if SCs(p,1) and Nis(p, 1)), then ol#¥) = (1, 1 1,0), so Fs p Vo
o eg.: if Gs(p,1) and Rls(ip,¢), then ol#¥) =(0,1,0,1), so =5

e theorem: if ¢ and ® are contingent, they can stand in only 7 of the
possible 16 (= 4 x 4) combinations of an opp. and an imp. relation

KU LEUVEN
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Information as range 13

@ general idea: the informativity of a statement o is inversely correlated
with the size of its information range I(o)

e informativity ordering <;: o <; 7 iff I(0) D I(7)

@ we are interested in statements of the form Rs(p, ),
with Rs € OGs UZGs

@ [(Rs(p, 1)) :=={M € Cs | M is compatible with Rs(¢,v)}

@ a model M of the logic S is said to be compatible with Rs(ip, 1) iff
forall 1 <i<4: (Rs(p, ) = bs ~ile,1)) = M b= ~Si(p, )

e lift informativity ordering from statements Rs((p, ) to relations Rs:
Rs <] Ss iff Voo, : Rs(p,9) <i Ss(p,)

KU LEUVEN
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Information in the opposition and implication geometries 14

e for 1 <i < 4, models of type i are those that make X;(p, 1) true
@ informativity of the opposition and implication relations:

\ models of type | | models of type

CDS(@aw) BIS(QO/(/)) 1' 4
Cs(p, 1) 2 3 4 Lis(e,v) 1 34
5Cs(p,7) 1,23 Ris(e,v) 12, 4
NCDs(p, ) 1234 Nis(p, ) 1234
high A contradiction (b) bi-impl
2
=
| contra- subcontra- left- right-
£ riety riety impl. impl.
£
R=
low .
non-impl.

non-contradiction

KU LEUVEN
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Technical and philosophical motivations 15

@ close match between formal account and intuitions:

e e.g. CDs is more informative than Cs
e if ¢ is known,

» announcing CDs(¢, ) uniquely determines
» announcing Cs(¢, ) does not uniquely determine 1

@ combinatorial results on finite Boolean algebras (~ bitstrings!)
o Boolean algebra B with 2" formulas, formula of level i:

» 1 contradictory
» 277" — 1 contraries and 2 — 1 subcontraries
> (2" —1)(2" — 1) non-contradictories

e l<2m i 12 1< (2 —1)(2—1)iffl<i<n-—1

@ coherence with earlier results:

e OGs and ZGs yield isomorphic informativity lattices
o CDs(p,1) < Bls(p, 1)) etc.

KU LEUVEN
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The special status of the Aristotelian square 16

@ why is the Aristotelian square special?

@ our answer: because it is very informative

e it is a very informative diagram (viz. no unconnectedness)
e in a very informative geometry (viz. the Aristotelian geometry)

KU LEUVEN
Introduction to Logical Geometry — Part 2



Informativity of the Aristotelian geometry, | 17

o Aristotelian geometry: hybrid between

e opposition geometry: contradiction, contrariety, subcontrariety
e implication geometry: left-implication (subalternation)

@ these relations are highly informative (in their geometries)

contradiction

contra- subcontra- left-
riety riety impl.

right-
impl.

non-contradiction non-impl.
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Informativity of the Aristotelian geometry, |1 18

@ given any two formulas:

o they stand in exactly one opposition relation R
e they stand in exactly one implication relation S

o theorem:

e if R is strictly more informative than S, then R is Aristotelian
e if S is strictly more informative than R, then S is Aristotelian

@ three examples (in Sb):

e [p and Op: non-contradiction and left-implication
e [Jp and O—p: contrariety and non-implication
e Op and O-p: contradiction and non-implication

DP\ Dp\ I:Ip\
<>p/_ o-p Qp/_ op (}p/_ o-p

KU LEUVEN
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Unconnectedness 19

@ given any two formulas: one opposition relation, one implication relation

e what if neither relation is strictly more informative than the other?
o theorem: this can only occur in one case: NCD + NI (unconnectedness)

contradiction bi-impl.

contra- subcontra- left- right-
riety riety impl. impl.

l non-contradiction non-impl. ]

@ Avristotelian gap = information gap

e no Aristotelian relation at all (recall that AGs is not exhaustive)
e combination of the two least informative relations

KU LEUVEN
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Unconnectedness 20

o recall the four-condition characterization of unconnectedness:

e ¢ and 7 can be true together cf. 1(p, )
e  can be true while 1 is false cf. Xa(p, )
e ( can be false while v is true cf. X3(p, )
e ¢ and ¢ can be false together cf. Xa(p, )

@ unconnectedness as the combination of
non-contradiction (X1, 34) and non-implication (X2, ¥3)

@ encoding unconnectedness requires bitstrings of length at least 4

o if B(F) ={0,1}" for n < 4,
then F does not contain any pair of unconnected formulas

e if F contains at least one pair of unconnected formulas,
then B(F) =2 {0,1}" for n >4

KU LEUVEN
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Unconnectedness in some Aristotelian diagrams, | 21

@ no unconnectedness in the classical Aristotelian square
H-p

X X i

@ no unconnectedness in the Jacoby-Sesmat-Blanché hexagon

OpvO-p OpvO-p

(@)
om,,(_ ™ D Z /NN os/ Y

e ] U7 e s e L -

D

/

|P

G<>P <>—po <P, o-p 2 5w
Op(/:s%p OpAOp OpAOp
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Unconnectedness in some Aristotelian diagrams, |1 22

@ unconnectedness in the Béziau octagon

@ e.g. p and Op A O—p are unconnected

KU LEUVEN
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Summary: opposition, implication and information 23

o the Aristotelian geometry is hybrid between opposition and implication

@ in order to maximize informativity

= applies to all Aristotelian diagrams

on the level of individual diagrams: avoid unconnectedness

in order to minimize uninformativity

= some Aristotelian diagrams succeed better than others

o classical square, JSB hexagon, SC hexagon don’t have unconnectedness
e Béziau octagon (and many other diagrams) do have unconnectedness

Q: what about, say, the JSB hexagon and SC hexagon?
(equally informative as the square, yet less widely known)

@ A: this requires yet another geometry: duality

KU LEUVEN
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Structure of the course 24

1. Basic Concepts and Bitstring Semantics

2. Abstract-Logical Properties of Aristotelian Diagrams, Part |
IS" Aristotelian, Opposition, Implication and Duality Relations

3. Visual-Geometric Properties of Aristotelian Diagrams
IS Informational Equivalence, Symmetry and Distance

4. Abstract-Logical Properties of Aristotelian Diagrams, Part I
5" Boolean Structure and Logic-Sensitivity

5. Case Studies and Philosophical Qutlook
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Aristotelian versus duality relations: introduction 25

@ square of opposition:

o visually represents the Aristotelian relations of contradiction,
contrariety, subcontrariety and subalternation

e nearly always also exhibits another type of logical relations, viz. the
duality relations of internal negation, external negation and duality

@ based on the concrete examples found in literature, the notions of
Aristotelian square and duality square seem almost co-extensional

@ but: clear conceptual differences between the two!

o the logical and visual properties of Aristotelian and duality diagrams in
isolation are relatively well-understood

KU LEUVEN
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Aristotelian versus duality relations: introduction 26

Aims and claims of this part of the lecture:

@ get clearer picture of interconnections between
the two types of relations

@ introduce a new type of diagram to visualise these interconnections:
the Aristotelian/Duality Multigraph (ADM)

@ octagons are natural extensions/generalizations of the classical square

e from an Aristotelian perspective and
o from a duality perspective

o the correspondence between Aristotelian and duality relations:

e is lost on the level of individual relations and diagrams
e is maintained on a more abstract level

KU LEUVEN
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Aristotelian relations and squares 27

some standard examples:

no A are B
all A are B all A are not B op op prg pPATY

notall Aarenot B notallAareB  ~Op “op ~("paq) ~(prq)
someAare B someAarenotB  Op Oop pvq —pvTg
contradiction —————————— subcontrariety

contrariety ~— -----meemeemeana- subalternation —

KU LEUVEN
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Aristotelian relations and squares 28

o the contradiction relation:
e most important and informative Aristotelian relation: each proposition ¢
has a unique contradictory (up to logical equivalence), viz. —p
o almost all Aristotelian diagrams in the literature are closed under
contradiction: if the diagram contains ¢, then it also contains —¢
= visualized by means of central symmetry IS |ecture 3

o the propositions in an Aristotelian diagram can naturally be grouped into
pairs of contradictory propositions (PCDs)

o Aristotelian diagrams:
o remember the shift of perspective:

» a square does not really consist of 4 individual propositions
» rather, a square consists of 2 PCDs

e natural way of extending the square: adding more PCDs:

» logically: from 2 PCDs to 3 PCDs to 4 PCDs to ...
» geometrically: from square to hexagon to octagon to ...

KU LEUVEN
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Duality relations and squares 29

@ suppose that two formulas ¢ and 1 are the results of applying n-ary
operators O, and Oy, to the same n propositions a1, ..., oy

e o =0,(1,...,an) and ¥ = Oy (e, ..., o).

@ o and 1) are said to be each other’s

external negation iff Og(ai,...,an) = 20u( a1,..., ap)
(ENEG)

internal negation iff Og(a1,...,0,) = Oy(—aq,...,1ay)
(INEG)

dual iff Ow(al, Ce ,Ozn) = ﬁOw(ﬂOzl, e —|O¢n)
(DUAL)

KU LEUVEN
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Duality relations and squares 30

the same standard examples:

no A arc B

all A are B all A are not B op up PArg PATq

INEG INEG INEG
o] o] =} g =} =}
S < S > < S 5 <, S

& 1, & A, & A,

= 2 $o a = S $o = = S o a

INEG INEG INEG
not all A are not B not all A arc B —oTp —op  ~(tpaTg) ~(prg)
somc Aarc B some A arc not B Op Op pPvq pvTq

@ the relations are functional (up to logical equivalence):
e eg. if INEG(p,11) and INEG(ip,1)2), then 1 = 1by
e we write ¢ = INEG(¢p) instead of INEG(y, 1))

@ the relations are symmetrical: e.g. DUAL(p, ) iff DUAL(Y), @)
@ the functions are idempotent: e.g. ENEG(ENEG(p)) = ¢ = ID(yp)

KU LEUVEN
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Duality relations and squares 31

o define the identity function 1D(p) := ¢

o the four duality functions ID, ENEG, INEG and DUAL form a Klein
4-group under composition (o), with the following Cayley table:

o ‘ 1D ENEG INEG DUAL

ID 1D ENEG INEG DUAL
ENEG ENEG ID DUAL INEG
INEG INEG DUAL ID ENEG
DUAL DUAL INEG ENEG 1D

o the Klein 4-group is isomorphic to Zy X Zs:
e each copy of Z, governs its own negation
e ID ~ (0,0), ENEG ~ (1,0), INEG ~ (0,1), and DUAL ~ (1,1)




Duality relations from squares to cubes

32

Natural way of extending the square:

e adding more independent negation positions

@ i.e. adding more copies of Zo

o logically: from Zo X Zo to Zo X Zo X 7o
from 2 negation positions to 3 negation positions
from 22 = 4 duality functions to 23 = 8 duality functions

e geometrically: from square to cube/octagon to ...

ValP(x)

QmZm

—VxOP(x)

Va-CIP(x),

(<)

&

QmZm

INEG

—Vx—OP(x)

INEG

§)®

UxTI=P(x)

(<}

E
N
E §'
G

—VxO—P(x)

V- [-P(x)

OmZm

“Va-P(x)
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Aristotelian /Duality Multigraphs (ADMs) 33

Aristotelian /duality multigraph (ADM): visualizes how many times a
specific combination of Aristotelian and duality relation occurs in the square

noAare B
all A are B all A are not B

vna

notall AarenotB notallAareB  —O7p —op ~(CpATq) ~(prg)
someAare B someAarenotB  Op Op pvq AN
contradiction ————o— B 1 A ———
contrariety =~ ----=--me-eeeee- subalternation ———p
CD c N SA4 EQ
ENEG INEG DUAL ID

KU LEUVEN
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Aristotelian/Duality Multigraph (ADM) 34

CD C sC 54 EQ

ENEG INEG DUAL D
The correspondence between Aristotelian and duality relations is not perfect,
but still highly regular

KU LEUVEN
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Aristotelian/Duality Multigraph (ADM) 35

CD C sC 54 EQ

ENEG INEG DUAL ID

The correspondence between Aristotelian and duality relations is not perfect,
but still highly regular

@ each Aristotelian relation corresponds to a unique duality relation

KU LEUVEN
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Aristotelian/Duality Multigraph (ADM) 36

CD C sC 54 EQ

ENEG INEG DUAL D
The correspondence between Aristotelian and duality relations is not perfect,
but still highly regular

@ each Aristotelian relation corresponds to a unique duality relation
@ vice versa, duality relations

e ENEG, DUAL and ID correspond to a unique Aristotelian relation
e INEG corresponds to two Aristotelian relations

KU LEUVEN
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Aristotelian/Duality Multigraph (ADM) 37

CD C sC 54

ENEG INEG DUAL

try

Q

The correspondence between Aristotelian and duality relations is not perfect,
but still highly regular

—

D

@ each Aristotelian relation corresponds to a unique duality relation
@ vice versa, duality relations:

e ENEG, DUAL and ID correspond to a unique Aristotelian relation
e INEG corresponds to two Aristotelian relations

o ADM for the square of opposition has 4 connected components,
viz. {CD,ENEG}, {C, SC,INEG}, {SA,DUAL} and {EQ,ID}

KU LEUVEN
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(In)dependence of Aristotelian and duality diagrams 38

@ this close correspondence leads to a quasi-identification
of the two types of squares:

e using Aristotelian terminology to describe duality square (or vice versa)
e viewing one as a generalization of the other

o already noted in medieval logic (Peter of Spain, William of Sherwood):

» mnemonic rhyme: pre contradic, post contra, pre postque subalter
» ENEG = pre = CD, INEG = post ~ C, DUAL = pre postque ~ SA

o still some crucial differences:

o duality relations are all symmetric < Aristotelian SA is asymmetric
o duality relations are all functional < Aristotelian C, SC and SA are not

BE” | 5bner (1990, 2011), Peters & Westerstahl (2006), Westerstahl (2012)

e duality relations are not logic-sensitive < Aristotelian relations are
IS” |ecture 4

KU LEUVEN
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(In)dependence of Aristotelian and duality diagrams 39

@ the most powerful way to argue for the independence of Aristotelian and
duality diagrams consists in analyzing diagrams beyond the square

e the hexagon is not the most natural extension of the square:

e natural extension from Aristotelian perspective (6 is a multiple of 2)
e not natural extension from duality perspective (6 is not a power of 2)

= JSB and SC hexagon are less informative than classical square

@ octagon = natural extension from Aristotelian + duality perspective:

from square to octagon
2x2=4=22 4x2=8=23
2 PCDs «w 2 x 2 4 PCDs «~ 4 x 2 = Aristotelian view
2 negations «~ 22 3 negations «~ 22 = duality view

@ discuss four octagons in detail:

o four different Aristotelian families of octagons
e two types of generalised duality, each revealed in two octagons

KU LEUVEN
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Octagons for composed operator duality 40

@ suppose that ¢ is the result of applying an n-ary composed operator
01 0 Os to n propositions ayq, ..., Qy,

Q = (01 o 02)(041, oeey an) = 01(02(041, e ,Ozn))

@ an extra negation position has become available!

@ the proposition O1(O2(aq,...,ay)) has a unique
e external negation (ENEG): =01( O2( aq,..., ap))
e intermediate negation (MNEG): O1(m02( a1,..., ayp))
e internal negation (INEG): O1( Oz(—au,...,"ay))

3 independent negation positions = 23 = 8 duality functions in total

much richer duality behavior:
e ENEG, MNEG, and INEG
e ENEG o MNEG (EM), ENEG o INEG (EI), and MNEG o INEG (MI)
e ENEC o MNEG o INEG (EMI)

KU LEUVEN
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Buridan octagon (modal syllogistics) 41
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Buridan octagon (modal syllogistics) 42

CD C SC Un S4 EQ
ENEG MNEG EMI INEG EI MI EM 1D

CcD C SC S4 EQ
ENEG INEG DUAL ID

KU LEUVEN
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Buridan octagon (modal syllogistics) 43

cD C SC Un SA EQ
ENEG MNEG EMI INEG EI MI EM D
cD 54 EQ

NG

ENEG INEG DUAL ID

KU LEUVEN
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Buridan octagon (modal syllogistics) 44

cD EQ
ENEG MNEG EMI INEG ID
cD c sC 54 EQ
ENEG INEG DUAL D

KU LEUVEN
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Buridan octagon (modal syllogistics) 45

CcD EQ
ENEG MNEG EMI INEG ID

CD c SC SA EQ
ENEG INEG DUAL ID

KU LEUVEN
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Lenzen octagon (modal logic S4.2) 46

K
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Lenzen octagon (modal logic S4.2) a7

() c sC 54 EQ
ENEG MNEG EMI INEG EI MI EM ID
CD 54 EQ

~ | |

ENEG INEG DUAL ID

KU LEUVEN
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Lenzen octagon (modal logic S4.2) 48

() c sc 54 EQ
ENEG MNEG EMI INEG EI MI EM ID
CD 54 EQ

~ | |

ENEG INEG DUAL ID

KU LEUVEN
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Lenzen octagon (modal logic S4.2) 49

() c sC 54 EQ
ENEG MNEG EMI INEG EI MI EM ID
CD 54 EQ

~ | |

ENEG INEG DUAL ID

KU LEUVEN
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Lenzen octagon (modal logic S4.2) 50

(o)) C sC 54 EQ
ENEG MNEG EMI INEG EI Ml EM ID
CD c SC 54 EQ
ENEG INEG DUAL D

KU LEUVEN
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Octagons for generalized Post duality 51

o classical duality applies internal negation to all arguments, i.e. the
internal negation of O(ay, ..., ay) is O(—ay, ..., "ay,)

@ now: apply internal negation to each argument independently

o with a binary operator O, we thus have 3 independent negation
positions in total: the proposition O(«1, a2) has a unique:

e external negation (ENEG): -0( a1, «9)
o first internal negation (INEG1): O(—ai, a2),
e second internal negation (INEG2): O( ay,a9)

@ 3 independent negation positions = 23 = 8 duality functions in total
@ much richer duality behavior:

e ENEG, INEG1, and INEG2
e ENEG o INEG1 (EIl), ENEG o INEG2 (EI2), and INEG1 o INEG2 (112)

e ENEG o INEG1 o INEG2 (EI12)
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Keynes-Johnson octagon (syllogistics with subject negation) 52
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Keynes-Johnson octagon (syllogistics with subject negation) 53
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Keynes-Johnson octagon (syllogistics with subject negation) 55

[
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Keynes-Johnson octagon (syllogistics with subject negation) 56

C sC

VAN //\\

ENEG | | INEGI INEG2 J | Ell ER2 ) | 112 EII2
CD C SC 54 EQ
ENEG INEG DUAL 1D
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Moretti octagon (propositional logic) 57

PN INEG2 pATq
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Moretti octagon (propositional logic) 58

cD c sC EQ
ENEG INEG1 112 INEG2 Ell EIl12 ID
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Moretti octagon (propositional logic) 59
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Moretti octagon (propositional logic) 60

cD c sC EQ
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Moretti octagon (propositional logic) 61

cD c sC S4 EQ
ENEG INEG1 112 INEG2 Ell EIl12 EI2 ID
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Conclusion 62

square of opposition ~~ classical duality

[j;] [\Z] [IAL] i

Buridan octagon ~~ composed operator duality
EQ
D

ENEG
Keynes-Johnson octagon ~~ generalised Post duality

MNEG  EMI INEG

HE AN




Conclusion 63

square of opposition ~~ classical duality

LA

Lenzen octagon ~~ composed operator duality

AN

ENEG MNEG  EMI INEG D

Moretti octagon ~ generalised Post duality

OGN

INEG1 112 INEG: EIl EI2 E2 D
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The End 64

Thank you! Questions?

More info: www.logicalgeometry.org

KU LEUVEN
Introduction to Logical Geometry — Part 2


www.logicalgeometry.org

