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Structure of the course 2

1. Basic Concepts and Bitstring Semantics

2. Abstract-Logical Properties of Aristotelian Diagrams, Part I
� Aristotelian, Opposition, Implication and Duality Relations

3. Visual-Geometric Properties of Aristotelian Diagrams
� Informational Equivalence, Symmetry and Distance

4. Abstract-Logical Properties of Aristotelian Diagrams, Part II
� Boolean Structure and Logic-Sensitivity

5. Case Studies and Philosophical Outlook
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The square of opposition 3

recall the Aristotelian geometry AGS = {CDS,CS,SCS, SAS}
(relative to an appropriate logical system S)

ϕ and ψ are said to be

S-contradictory (CDS) i� |=S ¬(ϕ ∧ ψ) and |=S ¬(¬ϕ ∧ ¬ψ)
S-contrary (CS) i� |=S ¬(ϕ ∧ ψ) and 6|=S ¬(¬ϕ ∧ ¬ψ)
S-subcontrary (SCS) i� 6|=S ¬(ϕ ∧ ψ) and |=S ¬(¬ϕ ∧ ¬ψ)
in S-subalternation (SAS) i� |=S ϕ→ ψ and 6|=S ψ → ϕ

Aristotelian square of opposition: 4 propositions + the Aristotelian
relations holding between them
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Generalizations of the Aristotelian square 4

throughout history: several proposals to extend the square of opposition

more propositions, more relations
larger and more complex diagrams
hexagons, octagons, cubes and other three-dimensional �gures

cf. the motivating examples from lecture 1
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The success of the Aristotelian square 5

the square and its extensions: various types of hexagons, octagons, etc.

the extensions are very interesting

well-motivated (propositional logic, modal logic S5)
throughout history (William of Sherwood, John Buridan, John N. Keynes)
interrelations (e.g. JSB hexagon is Boolean closure of classical square)

yet there is a stunning discrepancy:

(nearly) all logicians know about the Aristotelian square of opposition
(nearly) no logicians know about the other Aristotelian diagrams

our explanation: �the Aristotelian square is very informative�

this claim sounds intuitive, but is also vague
we will provide a precise and well-motivated framework
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Problems with the Aristotelian geometry 6

recall the Aristotelian geometry AGS: ϕ and ψ are said to be

S-contradictory (CDS) i� |=S ¬(ϕ ∧ ψ) and |=S ¬(¬ϕ ∧ ¬ψ)
S-contrary (CS) i� |=S ¬(ϕ ∧ ψ) and 6|=S ¬(¬ϕ ∧ ¬ψ)
S-subcontrary (SCS) i� 6|=S ¬(ϕ ∧ ψ) and |=S ¬(¬ϕ ∧ ¬ψ)
in S-subalternation (SAS) i� |=S ϕ→ ψ and 6|=S ψ → ϕ

problems with the relations of AGS:
not mutually exclusive: e.g. ⊥ and p are contrary and subaltern in CPL
(lemma: if ϕ,ψ are contingent, they stand in at most one Arist. relation)

not exhaustive: e.g. p and ♦p ∧ ♦¬p are in no Arist. relation at all in S5
(lemma: if ϕ is contingent, then ϕ stands in no Arist. relation to itself)

conceptual confusion: can be true/false together vs. truth propagation
I `together'  symmetrical relations (undirected)
I `propagation'  asymmetrical relations (directed)
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The opposition geometry 7

replace subalternation with `non-contradiction'

two formulas ϕ and ψ are said to be

S-contradictory (CDS) i� |=S ¬(ϕ ∧ ψ) and |=S ¬(¬ϕ ∧ ¬ψ)
S-contrary (CS) i� |=S ¬(ϕ ∧ ψ) and 6|=S ¬(¬ϕ ∧ ¬ψ)
S-subcontrary (SCS) i� 6|=S ¬(ϕ ∧ ψ) and |=S ¬(¬ϕ ∧ ¬ψ)
S-non-contradictory (NCDS) i� 6|=S ¬(ϕ ∧ ψ) and 6|=S ¬(¬ϕ ∧ ¬ψ)

the opposition geometry for S: OGS := {CDS,CS,SCS,NCDS}

Carnapian state descriptions (`rows 1 and 4 of a truth table'):

Σ1(ϕ,ψ) := ϕ ∧ ψ (note: `symmetry' between
Σ4(ϕ,ψ) := ¬ϕ ∧ ¬ψ conjuncts of Σ1 and Σ4)

OGS is de�ned of terms ¬Σ1 and ¬Σ4

Introduction to Logical Geometry � Part 2



The implication geometry 8

subalternation: truth propagation `from left to right'  left-implication

vary the `direction' of truth propagation

two formulas ϕ and ψ are said to be in

S-bi-implication (BIS) i� |=S ϕ→ ψ and |=S ψ → ϕ
S-left-implication (LIS) i� |=S ϕ→ ψ and 6|=S ψ → ϕ
S-right-implication (RIS) i� 6|=S ϕ→ ψ and |=S ψ → ϕ
S-non-implication (NIS) i� 6|=S ϕ→ ψ and 6|=S ψ → ϕ

the implication geometry for S: IGS := {BIS, LIS,RIS,NIS}

Carnapian state descriptions (`rows 2 and 3 of a truth table'):

Σ2(ϕ,ψ) := ϕ ∧ ¬ψ (note: `asymmetry' between
Σ3(ϕ,ψ) := ¬ϕ ∧ ψ conjuncts of Σ2 and Σ3)

IGS is de�ned of terms ¬Σ2 and ¬Σ3
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Motivating the new geometries, I 9

two new geometries: opposition geometry and implication geometry

together, they solve the problems of the Aristotelian geometry

the relations of OGS are mutually exclusive and jointly exhaustive:
each pair of formulas stands in exactly one opposition relation

the relations of IGS are mutually exclusive and jointly exhaustive:
each pair of formulas stands in exactly one implication relation

no longer conceptual confusion:

OGS is uniformly de�ned in terms of being able to be true/false together
(cf. the symmetrical state descriptions Σ1 and Σ4)

IGS is uniformly de�ned in terms of truth propagation
(cf. the asymmetrical state descriptions Σ2 and Σ3)
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Motivating the new geometries, II 10

clear link with Correia (2012):
two distinct philosophical traditions in interpreting the square:

square as a theory of negation commentaries on De Interpretatione

square as a theory of consequence commentaries on Prior Analytics

terminological remark:

`square of opposition', `hexagon of opposition', `cube of opposition'
misnomer: exclusive focus on OGS, while ignoring IGS
more appropriate terminology: `Aristotelian square' etc.
concrete examples from the literature:
I `square of opposition and equipollence' (John Mikhail, 2007)
I `square of implication and opposition' (W. E. Johnson, 1922)
I `octagon of implication and opposition' (W. E. Johnson, 1922)
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Motivating the new geometries, III 11

opposition and implication geometry are conceptually independent
yet there's a clear relationship between them (symmetry breaking):

CDS(ϕ,ψ) ⇔ BI S(ϕ,¬ψ)
CS(ϕ,ψ) ⇔ LI S(ϕ,¬ψ)
SCS(ϕ,ψ) ⇔ RI S(ϕ,¬ψ)
NCDS(ϕ,ψ) ⇔ NI S(ϕ,¬ψ)

both geometries are also internally structured:

CDS(ϕ,ψ) ⇔ CDS(¬ϕ,¬ψ) BI S(ϕ,ψ) ⇔ BI S(¬ϕ,¬ψ)
CS(ϕ,ψ) ⇔ SCS(¬ϕ,¬ψ) LI S(ϕ,ψ) ⇔ RI S(¬ϕ,¬ψ)
SCS(ϕ,ψ) ⇔ CS(¬ϕ,¬ψ) RI S(ϕ,ψ) ⇔ LI S(¬ϕ,¬ψ)
NCDS(ϕ,ψ) ⇔ NCDS(¬ϕ,¬ψ) NI S(ϕ,ψ) ⇔ NI S(¬ϕ,¬ψ)
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Motivating the new geometries, IV 12

given ϕ,ψ, we de�ne a binary, truth-functional connective
◦(ϕ,ψ) = (◦1, ◦2, ◦3, ◦4) ∈ {0, 1}4:

ϕ,ψ stand in exactly one opposition relation

for i = 1, 4, de�ne ◦i :=

{
0 if |=S ¬Σi(ϕ,ψ)

1 if 6|=S ¬Σi(ϕ,ψ)

ϕ,ψ stand in exactly one implication relation

for i = 2, 3, de�ne ◦i :=

{
0 if |=S ¬Σi(ϕ,ψ)

1 if 6|=S ¬Σi(ϕ,ψ)

theorem: for all ϕ,ψ, it holds that |= ϕ ◦(ϕ,ψ) ψ

e.g.: if SCS(ϕ,ψ) and NIS(ϕ,ψ), then ◦(ϕ,ψ) = (1, 1, 1, 0), so |=S ϕ ∨ ψ
e.g.: if CS(ϕ,ψ) and RIS(ϕ,ψ), then ◦(ϕ,ψ) = (0, 1, 0, 1), so |=S ¬ψ

theorem: if ϕ and ψ are contingent, they can stand in only 7 of the
possible 16 (= 4× 4) combinations of an opp. and an imp. relation
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Information as range 13

general idea: the informativity of a statement σ is inversely correlated
with the size of its information range I(σ)

informativity ordering ≤i: σ ≤i τ i� I(σ) ⊇ I(τ)

we are interested in statements of the form RS(ϕ,ψ),
with RS ∈ OGS ∪ IGS

I(RS(ϕ,ψ)) := {M ∈ CS |M is compatible with RS(ϕ,ψ)}

a model M of the logic S is said to be compatible with RS(ϕ,ψ) i�

for all 1 ≤ i ≤ 4 :
(
RS(ϕ,ψ) ⇒ |=S ¬Σi(ϕ,ψ)

)
=⇒M |= ¬Σi(ϕ,ψ)

lift informativity ordering from statements RS(ϕ,ψ) to relations RS:

RS ≤∀
i SS i� ∀ϕ,ψ : RS(ϕ,ψ) ≤i SS(ϕ,ψ)
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Information in the opposition and implication geometries 14

for 1 ≤ i ≤ 4, models of type i are those that make Σi(ϕ,ψ) true

informativity of the opposition and implication relations:

models of type models of type
CDS(ϕ,ψ) 1,2,3,4 BI S(ϕ,ψ) 1,2,3,4
CS(ϕ,ψ) 1,2,3,4 LI S(ϕ,ψ) 1,2,3,4
SCS(ϕ,ψ) 1,2,3,4 RI S(ϕ,ψ) 1,2,3,4
NCDS(ϕ,ψ) 1,2,3,4 NI S(ϕ,ψ) 1,2,3,4
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Technical and philosophical motivations 15

close match between formal account and intuitions:

e.g. CDS is more informative than CS

if ϕ is known,
I announcing CDS(ϕ,ψ) uniquely determines ψ
I announcing C S(ϕ,ψ) does not uniquely determine ψ

combinatorial results on �nite Boolean algebras (∼ bitstrings!)
Boolean algebra B with 2n formulas, formula of level i:
I 1 contradictory
I 2n−i − 1 contraries and 2i − 1 subcontraries
I (2n−i − 1)(2i − 1) non-contradictories

1 < 2n−i − 1, 2i − 1 < (2n−i − 1)(2i − 1) i� 1 < i < n− 1

coherence with earlier results:

OGS and IGS yield isomorphic informativity lattices
CDS(ϕ,ψ)⇔ BIS(ϕ,¬ψ) etc.
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The special status of the Aristotelian square 16

why is the Aristotelian square special?

our answer: because it is very informative

it is a very informative diagram (viz. no unconnectedness)
in a very informative geometry (viz. the Aristotelian geometry)
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Informativity of the Aristotelian geometry, I 17

Aristotelian geometry: hybrid between

opposition geometry: contradiction, contrariety, subcontrariety
implication geometry: left-implication (subalternation)

these relations are highly informative (in their geometries)
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Informativity of the Aristotelian geometry, II 18

given any two formulas:

they stand in exactly one opposition relation R
they stand in exactly one implication relation S

theorem:

if R is strictly more informative than S, then R is Aristotelian
if S is strictly more informative than R, then S is Aristotelian

three examples (in S5):

�p and ♦p: non-contradiction and left-implication

�p and �¬p: contrariety and non-implication
♦p and �¬p: contradiction and non-implication
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Unconnectedness 19

given any two formulas: one opposition relation, one implication relation

what if neither relation is strictly more informative than the other?

theorem: this can only occur in one case: NCD + NI (unconnectedness)

Aristotelian gap = information gap

no Aristotelian relation at all (recall that AGS is not exhaustive)
combination of the two least informative relations
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Unconnectedness 20

recall the four-condition characterization of unconnectedness:

ϕ and ψ can be true together cf. Σ1(ϕ,ψ)
ϕ can be true while ψ is false cf. Σ2(ϕ,ψ)
ϕ can be false while ψ is true cf. Σ3(ϕ,ψ)
ϕ and ψ can be false together cf. Σ4(ϕ,ψ)

unconnectedness as the combination of
non-contradiction (Σ1,Σ4) and non-implication (Σ2,Σ3)

encoding unconnectedness requires bitstrings of length at least 4

if B(F) ∼= {0, 1}n for n < 4,
then F does not contain any pair of unconnected formulas

if F contains at least one pair of unconnected formulas,
then B(F) ∼= {0, 1}n for n ≥ 4
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Unconnectedness in some Aristotelian diagrams, I 21

no unconnectedness in the classical Aristotelian square

no unconnectedness in the Jacoby-Sesmat-Blanché hexagon
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Unconnectedness in some Aristotelian diagrams, II 22

unconnectedness in the Béziau octagon

e.g. p and ♦p ∧ ♦¬p are unconnected
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Summary: opposition, implication and information 23

the Aristotelian geometry is hybrid between opposition and implication

in order to maximize informativity

⇒ applies to all Aristotelian diagrams

on the level of individual diagrams: avoid unconnectedness

in order to minimize uninformativity

⇒ some Aristotelian diagrams succeed better than others

classical square, JSB hexagon, SC hexagon don't have unconnectedness
Béziau octagon (and many other diagrams) do have unconnectedness

Q: what about, say, the JSB hexagon and SC hexagon?
(equally informative as the square, yet less widely known)

A: this requires yet another geometry: duality
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Structure of the course 24

1. Basic Concepts and Bitstring Semantics

2. Abstract-Logical Properties of Aristotelian Diagrams, Part I
� Aristotelian, Opposition, Implication and Duality Relations

3. Visual-Geometric Properties of Aristotelian Diagrams
� Informational Equivalence, Symmetry and Distance

4. Abstract-Logical Properties of Aristotelian Diagrams, Part II
� Boolean Structure and Logic-Sensitivity

5. Case Studies and Philosophical Outlook

Introduction to Logical Geometry � Part 2



Aristotelian versus duality relations: introduction 25

square of opposition:

visually represents the Aristotelian relations of contradiction,
contrariety, subcontrariety and subalternation
nearly always also exhibits another type of logical relations, viz. the
duality relations of internal negation, external negation and duality

based on the concrete examples found in literature, the notions of
Aristotelian square and duality square seem almost co-extensional

but: clear conceptual di�erences between the two!

the logical and visual properties of Aristotelian and duality diagrams in
isolation are relatively well-understood
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Aristotelian versus duality relations: introduction 26

Aims and claims of this part of the lecture:

get clearer picture of interconnections between
the two types of relations

introduce a new type of diagram to visualise these interconnections:
the Aristotelian/Duality Multigraph (ADM)

octagons are natural extensions/generalizations of the classical square

from an Aristotelian perspective and
from a duality perspective

the correspondence between Aristotelian and duality relations:

is lost on the level of individual relations and diagrams
is maintained on a more abstract level
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Aristotelian relations and squares 27

some standard examples:

Introduction to Logical Geometry � Part 2



Aristotelian relations and squares 28

the contradiction relation:

most important and informative Aristotelian relation: each proposition ϕ
has a unique contradictory (up to logical equivalence), viz. ¬ϕ
almost all Aristotelian diagrams in the literature are closed under
contradiction: if the diagram contains ϕ, then it also contains ¬ϕ
⇒ visualized by means of central symmetry � lecture 3

the propositions in an Aristotelian diagram can naturally be grouped into
pairs of contradictory propositions (PCDs)

Aristotelian diagrams:
remember the shift of perspective:
I a square does not really consist of 4 individual propositions
I rather, a square consists of 2 PCDs

natural way of extending the square: adding more PCDs:
I logically: from 2 PCDs to 3 PCDs to 4 PCDs to . . .
I geometrically: from square to hexagon to octagon to . . .
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Duality relations and squares 29

suppose that two formulas ϕ and ψ are the results of applying n-ary
operators Oϕ and Oψ to the same n propositions α1, . . . , αn

ϕ ≡ Oϕ(α1, . . . , αn) and ψ ≡ Oψ(α1, . . . , αn).

ϕ and ψ are said to be each other's

external negation i� Oϕ(α1, . . . , αn) ≡ ¬Oψ(¬α1, . . . ,¬αn)
(eneg)

internal negation i� Oϕ(α1, . . . , αn) ≡ ¬Oψ(¬α1, . . . ,¬αn)
(ineg)

dual i� Oϕ(α1, . . . , αn) ≡ ¬Oψ(¬α1, . . . ,¬αn)
(dual)
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Duality relations and squares 30

the same standard examples:

the relations are functional (up to logical equivalence):

e.g. if ineg(ϕ,ψ1) and ineg(ϕ,ψ2), then ψ1 ≡ ψ2

we write ψ = ineg(ϕ) instead of ineg(ϕ,ψ)

the relations are symmetrical: e.g. dual(ϕ,ψ) i� dual(ψ,ϕ)

the functions are idempotent: e.g. eneg(eneg(ϕ)) = ϕ = id(ϕ)
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Duality relations and squares 31

de�ne the identity function id(ϕ) := ϕ

the four duality functions id, eneg, ineg and dual form a Klein
4-group under composition (◦), with the following Cayley table:

◦ id eneg ineg dual

id id eneg ineg dual

eneg eneg id dual ineg

ineg ineg dual id eneg

dual dual ineg eneg id

the Klein 4-group is isomorphic to Z2 × Z2:

each copy of Z2 governs its own negation
id ∼ (0, 0), eneg ∼ (1, 0), ineg ∼ (0, 1), and dual ∼ (1, 1)

◦ (0, 0) (1, 0) (0, 1) (1, 1)

(0, 0) (0, 0) (1, 0) (0, 1) (1, 1)
(1, 0) (1, 0) (0, 0) (1, 1) (0, 1)
(0, 1) (0, 1) (1, 1) (0, 0) (1, 0)
(1, 1) (1, 1) (0, 1) (1, 0) (0, 0)
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Duality relations from squares to cubes 32

Natural way of extending the square:

adding more independent negation positions

i.e. adding more copies of Z2

logically: from Z2 × Z2 to Z2 × Z2 × Z2

logically: from 2 negation positions to 3 negation positions
logically: from 22 = 4 duality functions to 23 = 8 duality functions

geometrically: from square to cube/octagon to . . .
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Aristotelian/Duality Multigraphs (ADMs) 33

Aristotelian/duality multigraph (ADM): visualizes how many times a
speci�c combination of Aristotelian and duality relation occurs in the square
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Aristotelian/Duality Multigraph (ADM) 34

The correspondence between Aristotelian and duality relations is not perfect,
but still highly regular
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Aristotelian/Duality Multigraph (ADM) 35

The correspondence between Aristotelian and duality relations is not perfect,
but still highly regular

each Aristotelian relation corresponds to a unique duality relation
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Aristotelian/Duality Multigraph (ADM) 36

The correspondence between Aristotelian and duality relations is not perfect,
but still highly regular

each Aristotelian relation corresponds to a unique duality relation

vice versa, duality relations

eneg, dual and id correspond to a unique Aristotelian relation
ineg corresponds to two Aristotelian relations
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Aristotelian/Duality Multigraph (ADM) 37

The correspondence between Aristotelian and duality relations is not perfect,
but still highly regular

each Aristotelian relation corresponds to a unique duality relation

vice versa, duality relations:

eneg, dual and id correspond to a unique Aristotelian relation
ineg corresponds to two Aristotelian relations

ADM for the square of opposition has 4 connected components,
viz. {CD,eneg}, {C, SC, ineg}, {SA,dual} and {EQ, id}
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(In)dependence of Aristotelian and duality diagrams 38

this close correspondence leads to a quasi-identi�cation
of the two types of squares:

using Aristotelian terminology to describe duality square (or vice versa)

viewing one as a generalization of the other

already noted in medieval logic (Peter of Spain, William of Sherwood):
I mnemonic rhyme: pre contradic, post contra, pre postque subalter
I eneg = pre ≈ CD, ineg = post ≈ C, dual = pre postque ≈ SA

still some crucial di�erences:

duality relations are all symmetric ⇔ Aristotelian SA is asymmetric
duality relations are all functional ⇔ Aristotelian C, SC and SA are not

� Löbner (1990, 2011), Peters & Westerståhl (2006), Westerståhl (2012)

duality relations are not logic-sensitive ⇔ Aristotelian relations are

� lecture 4
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(In)dependence of Aristotelian and duality diagrams 39

the most powerful way to argue for the independence of Aristotelian and
duality diagrams consists in analyzing diagrams beyond the square

the hexagon is not the most natural extension of the square:

natural extension from Aristotelian perspective (6 is a multiple of 2)
not natural extension from duality perspective (6 is not a power of 2)

⇒ JSB and SC hexagon are less informative than classical square

octagon = natural extension from Aristotelian + duality perspective:

from square to octagon

2× 2 = 4 = 22 4× 2 = 8 = 23

2 PCDs! 2× 2 4 PCDs! 4× 2 ⇒ Aristotelian view
2 negations! 22 3 negations! 23 ⇒ duality view

discuss four octagons in detail:

four di�erent Aristotelian families of octagons
two types of generalised duality, each revealed in two octagons
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Octagons for composed operator duality 40

suppose that ϕ is the result of applying an n-ary composed operator
O1 ◦O2 to n propositions α1, . . . , αn

ϕ ≡ (O1 ◦O2)(α1, . . . , αn) = O1(O2(α1, . . . , αn))

an extra negation position has become available!

the proposition O1(O2(α1, . . . , αn)) has a unique

• external negation (eneg): ¬O1(¬O2(¬α1, . . . ,¬αn))
• intermediate negation (mneg): ¬O1(¬O2(¬α1, . . . ,¬αn))
• internal negation (ineg): ¬O1(¬O2(¬α1, . . . ,¬αn))

3 independent negation positions ⇒ 23 = 8 duality functions in total

much richer duality behavior:

eneg, mneg, and ineg

eneg ◦mneg (em), eneg ◦ ineg (ei), and mneg ◦ ineg (mi)
eneg ◦mneg ◦ ineg (emi)
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Buridan octagon (modal syllogistics) 41
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Buridan octagon (modal syllogistics) 42

Introduction to Logical Geometry � Part 2



Buridan octagon (modal syllogistics) 43
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Buridan octagon (modal syllogistics) 44

Introduction to Logical Geometry � Part 2



Buridan octagon (modal syllogistics) 45
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Lenzen octagon (modal logic S4.2) 46
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Lenzen octagon (modal logic S4.2) 47
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Lenzen octagon (modal logic S4.2) 48
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Lenzen octagon (modal logic S4.2) 49
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Lenzen octagon (modal logic S4.2) 50
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Octagons for generalized Post duality 51

classical duality applies internal negation to all arguments, i.e. the
internal negation of O(α1, . . . , αn) is O(¬α1, . . . ,¬αn)

now: apply internal negation to each argument independently

with a binary operator O, we thus have 3 independent negation
positions in total: the proposition O(α1, α2) has a unique:

• external negation (eneg): ¬O(¬α1,¬α2)
• �rst internal negation (ineg1): ¬O(¬α1,¬α2),
• second internal negation (ineg2): ¬O(¬α1,¬α2)

3 independent negation positions ⇒ 23 = 8 duality functions in total

much richer duality behavior:

eneg, ineg1, and ineg2

eneg ◦ ineg1 (ei1), eneg ◦ ineg2 (ei2), and ineg1 ◦ ineg2 (i12)
eneg ◦ ineg1 ◦ ineg2 (ei12)
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Keynes-Johnson octagon (syllogistics with subject negation) 52
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Keynes-Johnson octagon (syllogistics with subject negation) 53
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Keynes-Johnson octagon (syllogistics with subject negation) 54

Introduction to Logical Geometry � Part 2



Keynes-Johnson octagon (syllogistics with subject negation) 55
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Keynes-Johnson octagon (syllogistics with subject negation) 56
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Moretti octagon (propositional logic) 57
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Moretti octagon (propositional logic) 58
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Moretti octagon (propositional logic) 59
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Moretti octagon (propositional logic) 60
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Moretti octagon (propositional logic) 61
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Conclusion 62

square of opposition  classical duality

Buridan octagon  composed operator duality

Keynes-Johnson octagon  generalised Post duality
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Conclusion 63

square of opposition  classical duality

Lenzen octagon  composed operator duality

Moretti octagon  generalised Post duality
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The End 64

Thank you! Questions?

More info: www.logicalgeometry.org

Introduction to Logical Geometry � Part 2

www.logicalgeometry.org

