KU LEUVEN

Introduction to Logical Geometry
2. Abstract-Logical Properties of Aristotelian Diagrams, Part I

Lorenz Demey \& Hans Smessaert

ESSLLI 2018, Sofia

Structure of the course

1．Basic Concepts and Bitstring Semantics
2．Abstract－Logical Properties of Aristotelian Diagrams，Part I啀 Aristotelian，Opposition，Implication and Duality Relations

3．Visual－Geometric Properties of Aristotelian Diagrams噌 Informational Equivalence，Symmetry and Distance

4．Abstract－Logical Properties of Aristotelian Diagrams，Part II恽 Boolean Structure and Logic－Sensitivity

5．Case Studies and Philosophical Outlook

- recall the Aristotelian geometry $\mathcal{A \mathcal { G } _ { S }}=\left\{C D_{S}, C_{S}, S C_{S}, S A_{S}\right\}$ (relative to an appropriate logical system S)
- φ and ψ are said to be

S-contradictory $\left(C D_{\mathrm{S}}\right)$	iff	$\models_{\mathrm{S}} \neg(\varphi \wedge \psi)$	and	$\models_{\mathrm{S}} \neg(\neg \varphi \wedge \neg \psi)$
S-contrary $\left(C_{\mathrm{S}}\right)$	iff	$\models_{\mathrm{S}} \neg(\varphi \wedge \psi)$	and	$\not \models \mathrm{S} \neg(\neg \varphi \wedge \neg \psi)$
S-subcontrary $\left(S C_{\mathrm{S}}\right)$	iff	$\not \models \mathrm{S} \neg(\varphi \wedge \psi)$	and	$\models_{\mathrm{S}} \neg(\neg \varphi \wedge \neg \psi)$
in S-subalternation $\left(S A_{\mathrm{S}}\right)$	iff	$\models \mathrm{S}_{\mathrm{S}} \varphi \rightarrow \psi$	and	$\not \models \mathrm{S} \psi \rightarrow \varphi$

- Aristotelian square of opposition: 4 propositions + the Aristotelian relations holding between them

Generalizations of the Aristotelian square

- throughout history: several proposals to extend the square of opposition
- more propositions, more relations
- larger and more complex diagrams
- hexagons, octagons, cubes and other three-dimensional figures
- cf. the motivating examples from lecture 1

- the square and its extensions: various types of hexagons, octagons, etc.
- the extensions are very interesting
- well-motivated (propositional logic, modal logic S5)
- throughout history (William of Sherwood, John Buridan, John N. Keynes)
- interrelations (e.g. JSB hexagon is Boolean closure of classical square)
- yet there is a stunning discrepancy:
- (nearly) all logicians know about the Aristotelian square of opposition
- (nearly) no logicians know about the other Aristotelian diagrams
- our explanation: "the Aristotelian square is very informative"
- this claim sounds intuitive, but is also vague
- we will provide a precise and well-motivated framework

Problems with the Aristotelian geometry

- recall the Aristotelian geometry $\mathcal{A G}_{\mathrm{S}}: \varphi$ and ψ are said to be

$$
\begin{array}{lllll}
\text { S-contradictory }\left(C D_{\mathrm{S}}\right) & \text { iff } & \models_{\mathrm{S}} \neg(\varphi \wedge \psi) & \text { and } & \models_{\mathrm{S}} \neg(\neg \varphi \wedge \neg \psi) \\
\text { S-contrary }\left(C_{\mathrm{S}}\right) & \text { iff } & \models_{\mathrm{S}} \neg(\varphi \wedge \psi) & \text { and } & \not \models \mathrm{S} \neg(\neg \varphi \wedge \neg \psi) \\
\text { S-subcontrary }\left(S C_{\mathrm{S}}\right) & \text { iff } & \not \models \mathrm{S} \neg(\varphi \wedge \psi) & \text { and } & \models_{\mathrm{S}} \neg(\neg \varphi \wedge \neg \psi) \\
\text { in S-subalternation }\left(S A_{\mathrm{S}}\right) & \text { iff } & \models_{\mathrm{S}} \varphi \rightarrow \psi & \text { and } & \not \models \mathrm{S} \psi \rightarrow \varphi
\end{array}
$$

- problems with the relations of $\mathcal{A G}_{\mathrm{S}}$:
- not mutually exclusive: e.g. \perp and p are contrary and subaltern in CPL (lemma: if φ, ψ are contingent, they stand in at most one Arist. relation)
- not exhaustive: e.g. p and $\diamond p \wedge \diamond \neg p$ are in no Arist. relation at all in S5 (lemma: if φ is contingent, then φ stands in no Arist. relation to itself)
- conceptual confusion: can be true/false together vs. truth propagation
- 'together' \rightsquigarrow symmetrical relations (undirected)
- 'propagation' \rightsquigarrow asymmetrical relations (directed)

The opposition geometry

- replace subalternation with 'non-contradiction'
- two formulas φ and ψ are said to be

S-contradictory $\left(C D_{\mathrm{S}}\right)$	iff	$\models_{\mathrm{S}} \neg(\varphi \wedge \psi)$	and	$\models_{\mathrm{S}} \neg(\neg \varphi \wedge \neg \psi)$
S-contrary $\left(C_{\mathrm{S}}\right)$	iff	$\models_{\mathrm{S}} \neg(\varphi \wedge \psi)$	and	$\not{ }_{\mathrm{S}} \neg(\neg \varphi \wedge \neg \psi)$
S-subcontrary $\left(S C_{\mathrm{S}}\right)$	iff	$\not{ }_{\mathrm{S}} \neg(\varphi \wedge \psi)$	and	$\models_{\mathrm{S}} \neg(\neg \varphi \wedge \neg \psi)$
S-non-contradictory $\left(N C D_{\mathrm{S}}\right)$	iff	$\not \forall_{\mathrm{S}} \neg(\varphi \wedge \psi)$	and	$\not \models_{\mathrm{S}} \neg(\neg \varphi \wedge \neg \psi)$

- the opposition geometry for $\mathrm{S}: \mathcal{O} \mathcal{G}_{\mathrm{S}}:=\left\{C D_{\mathrm{S}}, C_{\mathrm{S}}, S C_{\mathrm{S}}, N C D_{\mathrm{S}}\right\}$
- Carnapian state descriptions ('rows 1 and 4 of a truth table'):
- $\Sigma_{1}(\varphi, \psi):=\varphi \wedge \psi$
- $\Sigma_{4}(\varphi, \psi):=\neg \varphi \wedge \neg \psi$
(note: ‘symmetry’ between conjuncts of Σ_{1} and Σ_{4})
- $\mathcal{O} \mathcal{G}_{S}$ is defined of terms $\neg \Sigma_{1}$ and $\neg \Sigma_{4}$
- subalternation: truth propagation 'from left to right' \rightsquigarrow left-implication
- vary the 'direction' of truth propagation
- two formulas φ and ψ are said to be in

		,	
implication (L / S)		$\models_{\mathrm{s}} \varphi \rightarrow \psi$	
S-right-implication ($R I_{S}$)	if	$\not \forall_{\mathrm{S}} \varphi \rightarrow \psi$	
S-non-implication (N / S)	iff	$\neq \mathrm{s} \varphi \rightarrow \psi \quad$ and	

- the implication geometry for $S: \mathcal{I} \mathcal{G}_{S}:=\left\{B I_{S}, L I_{S}, R I_{S}, N / I_{S}\right\}$
- Carnapian state descriptions ('rows 2 and 3 of a truth table'):
- $\Sigma_{2}(\varphi, \psi):=\varphi \wedge \neg \psi$
- $\Sigma_{3}(\varphi, \psi):=\neg \varphi \wedge \psi$
(note: 'asymmetry' between conjuncts of Σ_{2} and Σ_{3})
- $\mathcal{I} \mathcal{G}_{\mathrm{S}}$ is defined of terms $\neg \Sigma_{2}$ and $\neg \Sigma_{3}$

Motivating the new geometries, I

- two new geometries: opposition geometry and implication geometry
- together, they solve the problems of the Aristotelian geometry
- the relations of $\mathcal{O} \mathcal{G}_{\mathrm{S}}$ are mutually exclusive and jointly exhaustive: each pair of formulas stands in exactly one opposition relation
- the relations of $\mathcal{I} \mathcal{G}_{S}$ are mutually exclusive and jointly exhaustive: each pair of formulas stands in exactly one implication relation
- no longer conceptual confusion:
- $\mathcal{O G}_{\text {s }}$ is uniformly defined in terms of being able to be true/false together (cf. the symmetrical state descriptions Σ_{1} and Σ_{4})
- $\mathcal{I} \mathcal{G}_{S}$ is uniformly defined in terms of truth propagation (cf. the asymmetrical state descriptions Σ_{2} and Σ_{3})

Motivating the new geometries, II

- clear link with Correia (2012): two distinct philosophical traditions in interpreting the square:
- square as a theory of negation
- square as a theory of consequence
commentaries on De Interpretatione commentaries on Prior Analytics
- terminological remark:
- 'square of opposition', 'hexagon of opposition', 'cube of opposition'
- misnomer: exclusive focus on \mathcal{O}_{S}, while ignoring $\mathcal{I} \mathcal{G}_{S}$
- more appropriate terminology: 'Aristotelian square' etc.
- concrete examples from the literature:
- 'square of opposition and equipollence' (John Mikhail, 2007)
- 'square of implication and opposition' (W. E. Johnson, 1922)
- 'octagon of implication and opposition' (W. E. Johnson, 1922)

Motivating the new geometries, III

- opposition and implication geometry are conceptually independent yet there's a clear relationship between them (symmetry breaking):

$$
\begin{array}{ll}
C_{\mathrm{S}}(\varphi, \psi) & \Leftrightarrow \\
C_{\mathrm{S}}(\varphi, \psi) & \Leftrightarrow I_{\mathrm{S}}(\varphi, \neg \psi) \\
S I_{\mathrm{S}}(\varphi, \neg \psi) \\
\operatorname{NCD}_{\mathrm{S}}(\varphi, \psi) & \Leftrightarrow
\end{array} \Leftrightarrow \operatorname{RI}_{\mathrm{S}}(\varphi, \neg \psi),
$$

- both geometries are also internally structured:

$$
\begin{array}{lllll}
C D_{\mathrm{S}}(\varphi, \psi) & \Leftrightarrow & C_{\mathrm{S}}(\neg \varphi, \neg \psi) & B I_{\mathrm{S}}(\varphi, \psi) & \Leftrightarrow \\
C_{\mathrm{S}}(\varphi, \psi) & \Leftrightarrow & \mathrm{S} I_{\mathrm{S}}(\neg \varphi, \neg \psi) & \mathrm{SI}_{\mathrm{S}}(\varphi, \psi) & \Leftrightarrow \mathrm{R}, \neg \psi) \\
S I_{\mathrm{S}}(\neg \varphi, \neg \psi) \\
N C D_{\mathrm{S}}(\varphi, \psi) & \Leftrightarrow C_{\mathrm{S}}(\neg \varphi, \neg \psi) & R I_{\mathrm{S}}(\varphi, \psi) & \Leftrightarrow & \Leftrightarrow I_{\mathrm{S}}(\neg \varphi, \neg \psi) \\
N C D_{\mathrm{S}}(\neg \varphi, \neg \psi) & \mathrm{NI}_{\mathrm{S}}(\varphi, \psi) & \Leftrightarrow \mathrm{NI}_{\mathrm{S}}(\neg \varphi, \neg \psi)
\end{array}
$$

- given φ, ψ, we define a binary, truth-functional connective ${ }_{\circ}(\varphi, \psi)=\left(\circ_{1}, \circ_{2}, \circ_{3}, \circ_{4}\right) \in\{0,1\}^{4}:$
- φ, ψ stand in exactly one opposition relation

$$
\text { for } i=1,4 \text {, define } \circ_{i}:= \begin{cases}0 & \text { if } \models_{\mathrm{S}} \neg \Sigma_{i}(\varphi, \psi) \\ 1 & \text { if } \not \models_{\mathrm{S}} \neg \Sigma_{i}(\varphi, \psi)\end{cases}
$$

- φ, ψ stand in exactly one implication relation

$$
\text { for } i=2,3 \text {, define } \circ_{i}:= \begin{cases}0 & \text { if } \models_{S} \neg \Sigma_{i}(\varphi, \psi) \\ 1 & \text { if } \not \models \mathrm{S} \neg \Sigma_{i}(\varphi, \psi)\end{cases}
$$

- theorem: for all φ, ψ, it holds that $\models \varphi_{\circ}{ }^{(\varphi, \psi)} \psi$
- e.g.: if $S C_{\mathrm{S}}(\varphi, \psi)$ and $\operatorname{NI}_{\mathrm{S}}(\varphi, \psi)$, then $\circ^{(\varphi, \psi)}=(1,1,1,0)$, so $\models_{\mathrm{S}} \varphi \vee \psi$
- e.g.: if $C_{\mathrm{S}}(\varphi, \psi)$ and $\operatorname{RI}_{\mathrm{S}}(\varphi, \psi)$, then $\circ^{(\varphi, \psi)}=(0,1,0,1)$, so $\models_{\mathrm{s}} \neg \psi$
- theorem: if φ and ψ are contingent, they can stand in only 7 of the possible $16(=4 \times 4)$ combinations of an opp. and an imp. relation
- general idea: the informativity of a statement σ is inversely correlated with the size of its information range $\mathbb{I}(\sigma)$
- informativity ordering $\leq_{i}: \quad \sigma \leq_{i} \tau$ iff $\mathbb{I}(\sigma) \supseteq \mathbb{I}(\tau)$
- we are interested in statements of the form $R_{\mathrm{S}}(\varphi, \psi)$, with $R_{\mathrm{S}} \in \mathcal{O}_{\mathrm{S}} \cup \mathcal{I} \mathcal{G}_{\mathrm{S}}$
- $\mathbb{I}\left(R_{\mathrm{S}}(\varphi, \psi)\right):=\left\{\mathbb{M} \in \mathcal{C}_{\mathrm{S}} \mid \mathbb{M}\right.$ is compatible with $\left.R_{\mathrm{S}}(\varphi, \psi)\right\}$
- a model \mathbb{M} of the logic S is said to be compatible with $R_{\mathrm{S}}(\varphi, \psi)$ iff for all $1 \leq i \leq 4:\left(R_{\mathrm{S}}(\varphi, \psi) \Rightarrow \models_{\mathrm{S}} \neg \Sigma_{i}(\varphi, \psi)\right) \Longrightarrow \mathbb{M} \models \neg \Sigma_{i}(\varphi, \psi)$
- lift informativity ordering from statements $R_{\mathrm{S}}(\varphi, \psi)$ to relations R_{S} :
$R_{\mathrm{S}} \leq_{i}^{\forall} S_{\mathrm{S}}$ iff $\forall \varphi, \psi: R_{\mathrm{S}}(\varphi, \psi) \leq_{i} S_{\mathrm{S}}(\varphi, \psi)$

Information in the opposition and implication geometries

- for $1 \leq i \leq 4$, models of type i are those that make $\Sigma_{i}(\varphi, \psi)$ true
- informativity of the opposition and implication relations:

	models of type		models of type
$C D_{\mathrm{S}}(\varphi, \psi)$	2,3	$B I_{\mathrm{S}}(\varphi, \psi)$	1,4
$C_{\mathrm{S}}(\varphi, \psi)$	$2,3,4$	$L I_{\mathrm{S}}(\varphi, \psi)$	$1,3,4$
$S C_{\mathrm{S}}(\varphi, \psi)$	$1,2,3$	$R I_{\mathrm{S}}(\varphi, \psi)$	$1,2,4$
$N C D_{\mathrm{S}}(\varphi, \psi)$	$1,2,3,4$	$N I_{\mathrm{S}}(\varphi, \psi)$	$1,2,3,4$

- close match between formal account and intuitions:
- e.g. $C D_{\mathrm{S}}$ is more informative than C_{S}
- if φ is known,
- announcing $C D_{S}(\varphi, \psi)$ uniquely determines ψ
- announcing $C_{S}(\varphi, \psi)$ does not uniquely determine ψ
- combinatorial results on finite Boolean algebras
- Boolean algebra \mathbb{B} with 2^{n} formulas, formula of level i :
- 1 contradictory
- $2^{n-i}-1$ contraries and $2^{i}-1$ subcontraries
- $\left(2^{n-i}-1\right)\left(2^{i}-1\right)$ non-contradictories
- $1<2^{n-i}-1,2^{i}-1<\left(2^{n-i}-1\right)\left(2^{i}-1\right)$ iff $1<i<n-1$
- coherence with earlier results:
- $\mathcal{O G}_{S}$ and $\mathcal{I} \mathcal{G}_{S}$ yield isomorphic informativity lattices
- $C D_{S}(\varphi, \psi) \Leftrightarrow B I_{S}(\varphi, \neg \psi)$ etc.
- why is the Aristotelian square special?
- our answer: because it is very informative
- it is a very informative diagram
- in a very informative geometry
(viz. no unconnectedness)
(viz. the Aristotelian geometry)

Informativity of the Aristotelian geometry, I

- Aristotelian geometry: hybrid between
- opposition geometry: contradiction, contrariety, subcontrariety
- implication geometry: left-implication (subalternation)
- these relations are highly informative (in their geometries)

Informativity of the Aristotelian geometry, II

- given any two formulas:
- they stand in exactly one opposition relation R
- they stand in exactly one implication relation S
- theorem:
- if R is strictly more informative than S, then R is Aristotelian
- if S is strictly more informative than R, then S is Aristotelian
- three examples (in S5):
- $\square p$ and $\diamond p$: non-contradiction and left-implication
- $\square p$ and $\square \neg p$: contrariety and non-implication
- Δp and $\square \neg p$: contradiction and non-implication

- given any two formulas: one opposition relation, one implication relation
- what if neither relation is strictly more informative than the other?
- theorem: this can only occur in one case: NCD + NI (unconnectedness)

- Aristotelian gap $=$ information gap
- no Aristotelian relation at all (recall that $\mathcal{A G}_{S}$ is not exhaustive)
- combination of the two least informative relations

Unconnectedness

- recall the four-condition characterization of unconnectedness:
- φ and ψ can be true together
cf. $\Sigma_{1}(\varphi, \psi)$
- φ can be true while ψ is false
- φ can be false while ψ is true cf. $\Sigma_{2}(\varphi, \psi)$
- φ and ψ can be false together
cf. $\Sigma_{3}(\varphi, \psi)$
cf. $\Sigma_{4}(\varphi, \psi)$
- unconnectedness as the combination of non-contradiction (Σ_{1}, Σ_{4}) and non-implication $\left(\Sigma_{2}, \Sigma_{3}\right)$
- encoding unconnectedness requires bitstrings of length at least 4
- if $\mathbb{B}(\mathcal{F}) \cong\{0,1\}^{n}$ for $n<4$, then \mathcal{F} does not contain any pair of unconnected formulas
- if \mathcal{F} contains at least one pair of unconnected formulas, then $\mathbb{B}(\mathcal{F}) \cong\{0,1\}^{n}$ for $n \geq 4$
- no unconnectedness in the classical Aristotelian square

- no unconnectedness in the Jacoby-Sesmat-Blanché hexagon

Introduction to Logical Geometry - Part 2

- unconnectedness in the Béziau octagon
- e.g. p and $\Delta p \wedge \diamond \neg p$ are unconnected

Summary: opposition, implication and information

- the Aristotelian geometry is hybrid between opposition and implication
- in order to maximize informativity
\Rightarrow applies to all Aristotelian diagrams
- on the level of individual diagrams: avoid unconnectedness
- in order to minimize uninformativity
\Rightarrow some Aristotelian diagrams succeed better than others
- classical square, JSB hexagon, SC hexagon don't have unconnectedness
- Béziau octagon (and many other diagrams) do have unconnectedness
- Q: what about, say, the JSB hexagon and SC hexagon? (equally informative as the square, yet less widely known)
- A: this requires yet another geometry: duality

Structure of the course

1. Basic Concepts and Bitstring Semantics
2. Abstract-Logical Properties of Aristotelian Diagrams, Part I AT웅 Aristotelian, Opposition, Implication and Duality Relations
3. Visual-Geometric Properties of Aristotelian Diagrams噌 Informational Equivalence, Symmetry and Distance
4. Abstract-Logical Properties of Aristotelian Diagrams, Part II喴 Boolean Structure and Logic-Sensitivity
5. Case Studies and Philosophical Outlook

Aristotelian versus duality relations: introduction

- square of opposition:
- visually represents the Aristotelian relations of contradiction, contrariety, subcontrariety and subalternation
- nearly always also exhibits another type of logical relations, viz. the duality relations of internal negation, external negation and duality
- based on the concrete examples found in literature, the notions of Aristotelian square and duality square seem almost co-extensional
- but: clear conceptual differences between the two!
- the logical and visual properties of Aristotelian and duality diagrams in isolation are relatively well-understood

Aristotelian versus duality relations: introduction

Aims and claims of this part of the lecture:

- get clearer picture of interconnections between the two types of relations
- introduce a new type of diagram to visualise these interconnections: the Aristotelian/Duality Multigraph (ADM)
- octagons are natural extensions/generalizations of the classical square
- from an Aristotelian perspective and
- from a duality perspective
- the correspondence between Aristotelian and duality relations:
- is lost on the level of individual relations and diagrams
- is maintained on a more abstract level

some standard examples:

- the contradiction relation:
- most important and informative Aristotelian relation: each proposition φ has a unique contradictory (up to logical equivalence), viz. $\neg \varphi$
- almost all Aristotelian diagrams in the literature are closed under contradiction: if the diagram contains φ, then it also contains $\neg \varphi$ \Rightarrow visualized by means of central symmetry 展 lecture 3
- the propositions in an Aristotelian diagram can naturally be grouped into pairs of contradictory propositions (PCDs)
- Aristotelian diagrams:
- remember the shift of perspective:
- a square does not really consist of 4 individual propositions
- rather, a square consists of 2 PCDs
- natural way of extending the square: adding more PCDs:
- logically: from 2 PCDs to 3 PCDs to 4 PCDs to ...
- geometrically: from square to hexagon to octagon to ...
- suppose that two formulas φ and ψ are the results of applying n-ary operators O_{φ} and O_{ψ} to the same n propositions $\alpha_{1}, \ldots, \alpha_{n}$
- $\varphi \equiv O_{\varphi}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\psi \equiv O_{\psi}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
- φ and ψ are said to be each other's
external negation iff $O_{\varphi}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \equiv \neg O_{\psi}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ (ENEG)
internal negation iff $\quad O_{\varphi}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \equiv O_{\psi}\left(\neg \alpha_{1}, \ldots, \neg \alpha_{n}\right)$ (INEG)
dual
(DUAL)

Duality relations and squares

the same standard examples:

not all A are not B not all A are B some A are B some A are not B

- the relations are functional (up to logical equivalence):
- e.g. if $\operatorname{inEG}\left(\varphi, \psi_{1}\right)$ and $\operatorname{INEG}\left(\varphi, \psi_{2}\right)$, then $\psi_{1} \equiv \psi_{2}$
- we write $\psi=\operatorname{INEG}(\varphi)$ instead of $\operatorname{INEG}(\varphi, \psi)$
- the relations are symmetrical: e.g. $\operatorname{DUAL}(\varphi, \psi)$ iff $\operatorname{DUAL}(\psi, \varphi)$
- the functions are idempotent: e.g. $\operatorname{ENEG}(\operatorname{ENEG}(\varphi))=\varphi=\operatorname{ID}(\varphi)$
- define the identity function $\operatorname{ID}(\varphi):=\varphi$
- the four duality functions ID, ENEG, INEG and DUAL form a Klein 4-group under composition (○), with the following Cayley table:

O	ID	ENEG	INEG	DUAL
ID	ID	ENEG	INEG	DUAL
ENEG	ENEG	ID	DUAL	INEG
INEG	INEG	DUAL	ID	ENEG
DUAL	DUAL	INEG	ENEG	ID

- the Klein 4-group is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$:
- each copy of \mathbb{Z}_{2} governs its own negation
- ID $\sim(0,0)$, ENEG $\sim(1,0)$, INEG $\sim(0,1)$, and DUAL $\sim(1,1)$

\circ	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$(0,0)$	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$(1,0)$	$(1,0)$	$(0,0)$	$(1,1)$	$(0,1)$
$(0,1)$	$(0,1)$	$(1,1)$	$(0,0)$	$(1,0)$
$(1,1)$	$(1,1)$	$(0,1)$	$(1,0)$	$(0,0)$

Duality relations from squares to cubes

Natural way of extending the square:

- adding more independent negation positions
- i.e. adding more copies of \mathbb{Z}_{2}
- logically: from $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ to $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$
from 2 negation positions to 3 negation positions from $2^{2}=4$ duality functions to $2^{3}=8$ duality functions
- geometrically: from square to cube/octagon to ...

Aristotelian/Duality Multigraphs (ADMs)

Aristotelian/duality multigraph (ADM): visualizes how many times a specific combination of Aristotelian and duality relation occurs in the square

The correspondence between Aristotelian and duality relations is not perfect, but still highly regular

The correspondence between Aristotelian and duality relations is not perfect, but still highly regular

- each Aristotelian relation corresponds to a unique duality relation

The correspondence between Aristotelian and duality relations is not perfect, but still highly regular

- each Aristotelian relation corresponds to a unique duality relation
- vice versa, duality relations
- ENEG, DUAL and ID correspond to a unique Aristotelian relation
- ineg corresponds to two Aristotelian relations

Aristotelian/Duality Multigraph (ADM)

The correspondence between Aristotelian and duality relations is not perfect, but still highly regular

- each Aristotelian relation corresponds to a unique duality relation
- vice versa, duality relations:
- ENEG, DUAL and ID correspond to a unique Aristotelian relation
- ineg corresponds to two Aristotelian relations
- ADM for the square of opposition has 4 connected components, viz. $\{C D$, ENEG $\},\{C, S C$, INEG $\},\{S A, D U A L\}$ and $\{E Q$, ID $\}$
- this close correspondence leads to a quasi-identification of the two types of squares:
- using Aristotelian terminology to describe duality square (or vice versa)
- viewing one as a generalization of the other
- already noted in medieval logic (Peter of Spain, William of Sherwood):
- mnemonic rhyme: pre contradic, post contra, pre postque subalter
- ENEG $=$ pre $\approx C D$, INEG $=$ post $\approx C$, duAL $=$ pre postque $\approx S A$
- still some crucial differences:
- duality relations are all symmetric \Leftrightarrow Aristotelian $S A$ is asymmetric
- duality relations are all functional \Leftrightarrow Aristotelian C, SC and SA are not四 Löbner (1990, 2011), Peters \& Westerståhl (2006), Westerståhl (2012)
- duality relations are not logic-sensitive \Leftrightarrow Aristotelian relations are呗 lecture 4
- the most powerful way to argue for the independence of Aristotelian and duality diagrams consists in analyzing diagrams beyond the square
- the hexagon is not the most natural extension of the square:
- natural extension from Aristotelian perspective (6 is a multiple of 2)
- not natural extension from duality perspective (6 is not a power of 2) \Rightarrow JSB and SC hexagon are less informative than classical square
- octagon $=$ natural extension from Aristotelian + duality perspective:

from	square
	$2 \times 2=4=2^{2}$
	2 PCDs $\mathrm{m} \rightarrow 2 \times 2$
	2 negations $\longleftrightarrow 2^{2}$

to octagon

$$
4 \times 2=8=2^{3}
$$

4 PCDs $\leadsto 4 \times 2 \Rightarrow$ Aristotelian view
3 negations $\nrightarrow 2^{3} \Rightarrow$ duality view

- discuss four octagons in detail:
- four different Aristotelian families of octagons
- two types of generalised duality, each revealed in two octagons

Octagons for composed operator duality

- suppose that φ is the result of applying an n-ary composed operator $O_{1} \circ O_{2}$ to n propositions $\alpha_{1}, \ldots, \alpha_{n}$
- $\varphi \equiv\left(O_{1} \circ O_{2}\right)\left(\alpha_{1}, \ldots, \alpha_{n}\right)=O_{1}\left(O_{2}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$
- an extra negation position has become available!
- the proposition $O_{1}\left(O_{2}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$ has a unique
- external negation (ENEG):
- intermediate negation (MNEG): $\quad O_{1}\left(\neg O_{2}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$
- internal negation (INEG): $\quad O_{1}\left(O_{2}\left(\neg \alpha_{1}, \ldots, \neg \alpha_{n}\right)\right)$
- 3 independent negation positions $\Rightarrow 2^{3}=8$ duality functions in total
- much richer duality behavior:
- ENEG, MNEG, and INEG
- ENEG○ MNEG (Em), ENEG○ ineg (Ei), and mNeG○ ineg (mi)
- ENEG \circ MNEG \circ INEG (EMi)

Buridan octagon (modal syllogistics)

$C D$
$\|$
ENEG
INEG

KULEUVEN

$E Q$

EQ

ID

Buridan octagon (modal syllogistics)

Lenzen octagon (modal logic S4.2)

Lenzen octagon (modal logic S4.2)

- classical duality applies internal negation to all arguments, i.e. the internal negation of $O\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is $O\left(\neg \alpha_{1}, \ldots, \neg \alpha_{n}\right)$
- now: apply internal negation to each argument independently
- with a binary operator O, we thus have 3 independent negation positions in total: the proposition $O\left(\alpha_{1}, \alpha_{2}\right)$ has a unique:
- external negation (ENEG):
- first internal negation (INEG1):

$$
\begin{gathered}
\neg O\left(\begin{array}{cc}
\alpha_{1}, & \left.\alpha_{2}\right) \\
O\left(\neg \alpha_{1},\right. & \left.\alpha_{2}\right) \\
O(& \alpha_{1}, \\
\left.\neg \alpha_{2}\right)
\end{array}\right.
\end{gathered}
$$

- second internal negation (INEG2):
- 3 independent negation positions $\Rightarrow 2^{3}=8$ duality functions in total
- much richer duality behavior:
- eneg, ineg1, and ineg2
- ENEG○ INEG1 (EI1), ENEG○ INEG2 (EI2), and INEG1○ INEG2 (I12)
- ENEG ○ INEG1 ○ INEG2 (EI12)

Keynes-Johnson octagon (syllogistics with subject negation) 52

Keynes-Johnson octagon (syllogistics with subject negation) 53

ENEG
$\|_{\text {ENEG }}^{C D}$

Keynes-Johnson octagon (syllogistics with subject negation) 54

Keynes-Johnson octagon (syllogistics with subject negation) 55

Keynes-Johnson octagon (syllogistics with subject negation) 56

Moretti octagon (propositional logic)

Moretti octagon (propositional logic)

Moretti octagon (propositional logic)

Moretti octagon (propositional logic)

square of opposition \rightsquigarrow classical duality

Buridan octagon \rightsquigarrow composed operator duality

Keynes-Johnson octagon \rightsquigarrow generalised Post duality

Introduction to Logical Geometry - Part 2
square of opposition \rightsquigarrow classical duality

Lenzen octagon \rightsquigarrow composed operator duality

Moretti octagon \rightsquigarrow generalised Post duality

Thank you! Questions?

More info: www.logicalgeometry.org

