KU LEUVEN

Introduction to Logical Geometry3. Visual-Geometric Properties of Aristotelian Diagrams

Lorenz Demey & Hans Smessaert

- 1. Basic Concepts and Bitstring Semantics
- 2. Abstract-Logical Properties of Aristotelian Diagrams, Part I Aristotelian, Opposition, Implication and Duality Relations
- 3. Visual-Geometric Properties of Aristotelian Diagrams ^{III} Informational Equivalence, Symmetry and Distance
- 4. Abstract-Logical Properties of Aristotelian Diagrams, Part II Boolean Structure and Logic-Sensitivity
- 5. Case Studies and Philosophical Outlook

KU LEL

- Aristotelian diagrams represent logical structure/information
 - Aristotelian relations
 - classical square: 2 CD, 1 C, 1 SC, 2 SA
 - degenerate square: 2 CD
 - underlying Boolean structure
 - classical square: Boolean closure is (isomorphic to) \mathbb{B}_3
 - degenerate square: Boolean closure is (isomorphic to) \mathbb{B}_4
- diagrams belonging to different Aristotelian families are **not informationally equivalent**
 - they visualize different logical structures
 - differences between diagrams ++++ differences between logical structures
- Jill Larkin and Herbert Simon (1987), Why a Diagram is (Sometimes) Worth 10.000 Words

KULE

Informational and computational equivalence

- if we focus on diagrams belonging to the **same Aristotelian family**, we notice that different authors still use **vastly different diagrams**:
 - logical properties of the diagram are fully determined
 - visual-geometric properties are still seriously underspecified ⇒ various design choices possible

• multiple diagrams for the same formulas and logical system are:

- informationally equivalent
 - contain the same logical information
 - visualize one and the same logical structure
- not necessarily computationally/cognitively equivalent:
 - one diagram might be more helpful/useful than the other ones (ease of access to the information contained in the diagram)
 - visual differences might influence diagrams' effectiveness (user comprehension of the underlying logical structure)

KU LEU

Informational and computational equivalence

standard and alternative visualisations of the JSB family

KU LEUVEN

standard and alternative visualisations of the Keynes-Johnson family

KU LEUVEN

- How to choose among informationally equivalent diagrams?
- \Rightarrow rely on general cognitive principles (Corin Gurr, Barbara Tversky):
 - information selection/ommission and simplification/distortion
 - Apprehension Principle: the content/structure of the visualization can readily and correctly be perceived and understood
 - **Congruence Principle**: the content/structure of the visualization corresponds to the content/structure of the desired mental representation

[abstract-logical] [visual-geometric] properties, relations among sets of formulas ← isomorphism → shape characteristics congruence of the diagrams

Introduction to Logical Geometry - Part 3

Informational and computational equivalence

- a good diagram simultaneously engages the user's **logical** and **visual** cognitive systems
- facilitate inferential or heuristic free rides (Atsushi Shimojima)
 - logical properties are directly manifested in the diagram's visual features
 - user can grasp these properties with little cognitive effort
 ⇒ "you don't have to reason about it, you just see it!"
- suppose that Aristotelian diagrams D1 and D2 have differerent shapes:
 - shape of D1 more clearly isomorphic to subject matter
 - shape of D2 less clearly isomorphic to subject matter
- then D1 will trigger more heuristics than D2:
 - ceteris paribus, D1 will be a more effective visualization than D2
 - D1 and D2 are not computationally/cognitively equivalent

Introduction to Logical Geometry – Part 3

KULE

Logic versus geometry in Aristotelian diagrams: setup

- two assumptions (satisfied by nearly all diagrams in the literature):
 - the fragment is closed under negation (if $\varphi \in \mathcal{F}$ then $\neg \varphi \in \mathcal{F}$)
 - negation is visualized by means of **central symmetry** (φ and $\neg \varphi$ occupy diametrically opposed points in the diagram)
- since the fragment is closed under negation, it can be seen
 - as consisting of 2n formulas
 - as consisting of n pairs of contradictory formulas (PCDs)

Introduction to Logical Geometry - Part 3

Configurations of PCDs

- number of configurations of n PCDs: $2^n \times n!$
 - the $n\ {\rm PCDs}$ can be ordered in n! different ways
 - each of the n PCDs has 2 orientations: $(\varphi,\neg\varphi)$ vs. $(\neg\varphi,\varphi)$
- strictly based on the logical properties of the fragment
- independent of any concrete visualization
- example: for n = 2 PCDs, there are $2^n \times n! = 8$ configurations

- polygon/polyhedron \mathcal{P} to visualize an *n*-PCD logical fragment $\Rightarrow 2n$ vertices ($\sim 2n$ formulas) and central symmetry (\sim contradiction)
- \mathcal{P} has a symmetry group $\mathcal{S}_{\mathcal{P}}$
 - $\bullet\,$ contains the reflectional and rotational symmetries of ${\cal P}\,$
 - $\bullet\,$ the cardinality $|\mathcal{S}_{\mathcal{P}}|$ measures how 'symmetric' \mathcal{P} is
- strictly based on the geometrical properties of the polygon/polyhedron
- independent of the logical structure that is being visualized
- example: a square has 8 reflectional/rotational symmetries, i.e. $|S_{sq}| = 8$

- \bullet visualize $\mathit{n}\text{-}\mathsf{PCD}$ fragment by means of $\mathcal P$
 - logical number: $2^n \times n!$
 - geometrical number: $|\mathcal{S}_{\mathcal{P}}|$
- $2^n \times n! \ge |\mathcal{S}_{\mathcal{P}}|$ (typically: > instead of \ge)
 - every symmetry of ${\cal P}$ can be seen as the result of permuting/changing the orientation of the PCDs
 - but typically not vice versa

KU LEUV

- example
 - $\bullet\,$ reflect the hexagon around the axis defined by $\Box p$ and $\Diamond \neg p$
 - permute the PCDs $(\Diamond p, \Box \neg p)$ and $(\Box p \lor \Box \neg p, \Diamond p \land \Diamond \neg p)$

KU LEUVEN

- example
 - change the orientation of the PCD $(\Box p \lor \Box \neg p, \Diamond p \land \Diamond \neg p)$
 - no reflectional/rotational symmetry

KU LEUVEN

- \bullet work up to symmetry: $\frac{2^n \times n!}{|\mathcal{S}_{\mathcal{P}}|}$ fundamental forms
 - diagrams with same fundamental form
 ⇒ reflectional/rotational variants of each other
 - diagrams with different fundamental forms:
 ⇒ not reflectional/rotational variants of each other
- \bullet one $n\mbox{-}\mathsf{PCD}$ fragment, two different visualizations $\mathcal P$ and $\mathcal P'$
 - ${\mathcal P}$ is less symmetric than ${\mathcal P}'$
 - $\Leftrightarrow |\mathcal{S}_{\mathcal{P}}| < |\mathcal{S}_{\mathcal{P}'}|$ $\Leftrightarrow \frac{2^n \times n!}{|\mathcal{S}_{\mathcal{P}}|} > \frac{2^n \times n!}{|\mathcal{S}_{\mathcal{P}'}|}$
 - $\Leftrightarrow \mathcal{P} \text{ has more fundamental forms than } \mathcal{P}'$

KU LEU

Diagram quality

- \bullet diagrams ${\mathcal P}$ and ${\mathcal P}'$ for the same $n\mbox{-}{\sf PCD}$ fragment
 - ${\mathcal P}$ is less symmetric than ${\mathcal P}'$, i.e. has more fundamental forms than ${\mathcal P}'$
 - ${\mathcal P}$ makes some visual distinctions that are not made by ${\mathcal P}'$
- the diagrammatic quality of \mathcal{P} and \mathcal{P}' depends on whether these additional **visual distinctions** correspond to any **logical distinctions** in the underlying fragment (recall the Congruence Principle)
- if there are such logical distinctions in the fragment:
 - \mathcal{P} visualizes these logical distinctions (different fundamental forms)
 - \mathcal{P}' collapses these logical distinctions (same fundamental form)
 - \mathcal{P} is better visualization than \mathcal{P}'
- if there are no such logical distinctions in the fragment:
 - no need for any visual distinctions either
 - different fundamental forms of \mathcal{P} : by-products of its lack of symmetry
 - \mathcal{P}' is better visualization than \mathcal{P}

Introduction to Logical Geometry - Part 3

KULE

- in general: $\frac{n! \times 2^n}{|\mathcal{S}_{\mathcal{P}}|}$ fundamental forms
- 2-PCD fragment $\Rightarrow 2! \times 2^2 = 8$ configurations of PCDs
- some visualizations that have been used in the literature:
 - square: $|S_{sq}| = 8$ $\frac{2! \times 2^2}{|S_{sq}|} = \frac{8}{8} = 1$ fundamental form
 - (proper) rectangle: $|S_{rect}| = 4$ $\frac{2! \times 2^2}{|S_{rect}|} = \frac{8}{4} = 2$ fundamental forms
- Aristotelian families of 2-PCD fragments:
 - classical
 - degenerate

KU LEU

- 1 fundamental form
- no visual distinction between long and short edges (all edges are equally long)

- 2 fundamental forms
- visual distinction: long vs short edges
 - (sub)contrariety on long edges, subalternation on short edges
 - (sub)contrariety on short edges, subalternation on long edges

• is there a distinction between (sub)contrariety and subalternation?

• yes, there is

- ${\ensuremath{\, \bullet }}$ complementary perspectives on the classical 'square' of opposition:
 - ► as a theory of negation (commentaries on *De Interpretatione*)
 - ► as a theory of logical consequence (commentaries on *Prior Analytics*)
- focus on different Aristotelian relations:
 - theory of negation \Rightarrow focus on (sub)contrariety
 - $\blacktriangleright \ \ theory \ of \ \ consequence \ \Rightarrow \ focus \ on \ \ subalternation$
- rectangle does justice to these differences (square would collapse them)

• no, there isn't

- logical unity of all the Aristotelian relations
 - every (sub)contrariety yields two corresponding subalternations
 - \blacktriangleright every subalternation yields corresponding contrariety and subcontrariety
- square does justice to this unity (rectangle would introduce artificial differences)

KU LEU

- in general: $\frac{n! \times 2^n}{|\mathcal{S}_{\mathcal{P}}|}$ fundamental forms
- 3-PCD fragment \Rightarrow 3! \times 2³ = 48 configurations
- some visualizations that have been used in the literature:
 - hexagon: $|S_{hex}| = 12$ $\frac{3! \times 2^3}{|S_{hex}|} = \frac{48}{12} = 4$ fundamental forms
 - octahedron: $|S_{octa}| = 48$

$$\frac{3! imes 2^3}{|\mathcal{S}_{\mathsf{octa}}|} = \frac{48}{48} = \mathbf{1}$$
 fundamental form

- Aristotelian families of 3-PCD fragments:
 - Jacoby-Sesmat-Blanché (JSB)
 - Sherwood-Czezowski (SC)
 - unconnected-4 (U4)
 - unconnected-8 (U8)
 - unconnected-12 (U12)

- 4 fundamental forms
- visual distinction:
 - all three contrariety edges equally long
 - one contrariety edge longer than the other two

- 1 fundamental form
- no visual distinction between long and short contrariety edges (all contrariety edges are equally long)

- are there different kinds of contrariety?
- \bullet usually, the contrary formulas are modeled as elements of \mathbb{B}_3
 - bitstrings 100, 010 and 001
 - all contrarieties are equally 'strong'
- for linguistic/cognitive reasons, it is sometimes useful to model the contrary formulas as elements of, say, \mathbb{B}_5
 - bitstrings 10000, 01110, 00001
 - the contrariety 10000–00001 is 'stronger' than the two other contrarieties
- in the hexagon: edge length ++++ contrariety strength
- in the octahedron: no distinction possible (collapse)
 - \Rightarrow hexagon is the preferred visualization

(Congruence)

KU LEL

Logic versus geometry in Aristotelian diagrams: conclusion 25

- systematic approach to informationally equivalent Aristotelian diagrams: logic (PCD structure) vs geometry (symmetry group)
- applied to some Aristotelian families of 2-PCD and 3-PCD fragments
- in general: to visualize an n-PCD fragment, consider a polytope
 - that is centrally symmetric
 - that has 2n vertices
 - that has a symmetry group of order $2^n \times n!$
 - $\Rightarrow cross-polytope of dimension n \Rightarrow 1 fundamental form$ (dual of the*n*-dimensional hypercube)

KU LEU

- diagrammatically ineffective (>3D beyond human visual cognition)
- but theoretically important: first few cases:
 - n = 2: 2D cross-polytope: dual of the square: square
 - n = 3: 3D cross-polytope: dual of the cube: **octahedron**

- a Hasse diagram visualizes a partially ordered set (P, \leq) :
 - $\begin{array}{ll} \leq \text{ is reflexive:} & \text{ for all } x \in P : x \leq x \\ \leq \text{ is transitive:} & \text{ for all } x, y, z \in P : x \leq y, y \leq z \Rightarrow x \leq z \\ < \text{ is antisymmetric:} & \text{ for all } x, y \in P : x \leq y, y \leq x \Rightarrow x = y \end{array}$
- Hasse diagrams in logic and mathematics:
 - $\begin{array}{ll} \mbox{divisibility poset} & x \leq y \mbox{ iff } x \mbox{ divides } y \\ \mbox{subgroup lattices} & x \leq y \mbox{ iff } x \mbox{ is a subgroup of } y \\ \mbox{logic/Boolean algebra} & x \leq y \mbox{ iff } x \mbox{ logically entails } y \end{array}$
- we focus on Boolean algebras
 - always have a Hasse diagram that is centrally symmetric
 - can be partitioned into levels $L_0, L_1, L_2, \ldots, L_{n-1}, L_n$

KULE

Aristotelian diagrams versus Hasse diagrams

- three key differences between Aristotelian and Hasse diagrams:
 - $\textcircled{0} \hspace{0.1 cm} \text{the non-contingent formulas} \hspace{0.1 cm} \bot \hspace{0.1 cm} \text{and} \hspace{0.1 cm} \top$
 - 2 the general direction of the entailments
 - visualization of the levels
- \bullet first difference: the non-contingent formulas \perp and \top
 - Hasse diagrams: visualized, as begin-/end-points of the <-ordering
 - \bullet Aristotelian diagrams: \perp and \top are usually **not visualized**
 - Sauriol, Smessaert, etc.: \perp and \top are in Aristotelian diagrams after all:
 - \perp and \top coincide in the diagram's center of symmetry

Introduction to Logical Geometry - Part 3

KU LEUV

Aristotelian diagrams versus Hasse diagrams

- second difference: the general direction of the entailments
 - Hasse diagrams: all entailments go upwards
 - Aristotelian diagrams: no single shared direction
- third difference: visualization of the levels
 - Hasse diagrams: levels L_i are visualized as horizontal hyperplanes
 - Aristotelian diagrams: no uniform visualization of levels

KU LEUVEN

- recall the Congruence Principle:
 - the content/structure of the visualization corresponds to the content/structure of the desired mental representation
 - cf. Barbara Tversky et al.
- different visual properties <---> different goals
 - Aristotelian diagrams: visualize the Aristotelian relations
 - ullet Hasse diagrams: visualize the structure of the entailment ordering \leq
- Hasse diagrams: strong congruence between logical and visual properties
 - shared direction of entailment (vertically upward)
 - levels as horizontal lines/planes
 - $\blacktriangleright \ \, \text{if} \ \varphi,\psi\in L_i \text{, then } \varphi \not\leq \psi \text{ and } \psi \not\leq \varphi$
 - ▶ formulas of a single level are **independent** of each other w.r.t. \leq
 - level = horizontal \Rightarrow orthogonal to the vertical \leq -direction

KULE

- consider the three S5-formulas $\Box p$, $\Box \neg p$, $\Diamond p \land \Diamond \neg p$
 - Hasse perspective: all belong to $L_1 \Rightarrow$ horizontal line
 - Aristotelian perspective: all contrary to each other
- \bullet the contrariety between $\Box p$ and $\Box \neg p$ overlaps with the two others
 - serious violation of the Apprehension Principle
 - direct reason: the three formulas lie on a single line
- this is solved in the Aristotelian diagram:
 - $\bullet \;\; {\rm move} \; \Diamond p \wedge \Diamond \neg p \; {\rm away} \; {\rm from} \; {\rm the} \; {\rm line} \; {\rm between} \; \Box p \; {\rm and} \; \Box \neg p$
 - $\bullet\,$ triangle of contrarieties \Rightarrow in line with Apprehension Principle
 - ullet mixing of levels, no single entailment direction, ot moves to middle

- we restrict ourselves to Aristotelian diagrams that are Boolean closed
- $\bullet\,$ the Hasse diagram of \mathbb{B}_3 can be drawn as a three-dimensional cube
 - $\bullet\,$ general entailment direction runs from 000 to $111\,$
 - logical levels ++++ planes orthogonal to the entailment direction

KU LEUVEN

- in (a) the cube consists of 4 pairs of diametrically opposed vertices:
 - 3 contingent pairs: 101-010, 110-001, 011-100
 - 1 non-contingent pair: 000—111
- each pair defines a projection axis for vertex-first parallel projection:
 - in (b) projection along 000-111 axis
 - in (c) projection along 101-010 axis

- the vertex-first projections from 3D cube to 2D hexagon:
 (a) projection along 000—111 ⇒ Aristotelian diagram (JSB hexagon)
 (b) projection along 101—010 ⇒ Hasse diagram (almost)
- if we slightly 'nudge' the projection axis 101—010, we get:
 (c) projection 'along' 101—010 ⇒ Hasse diagram

KU LEUVEN

- both Aristotelian and Hasse diagram are vertex-first parallel projections of cube:
 - Aristotelian diagram: project along the entailment direction (000-111)
 - Hasse diagram: project along another direction (101-010)
- recall the dissimilarities between Aristotelian and Hasse diagrams:
 - $\textcircled{0} \hspace{0.1 cm} \text{the position of } \bot \hspace{0.1 cm} \text{and} \hspace{0.1 cm} \top$
 - 2 the general direction of the entailments
 - the visualization of the levels
- these three differences turn out to be interrelated: different manifestations of a single choice (**projection axis**)
- now: illustrate these differences by means of a more basic vertex-first projection (from 2D square to 1D line)

KUL

difference 1: the position of \perp and \top

the square is a Hasse diagram $\Rightarrow \bot$ and \top as lowest and highest point (a) project along other direction $\Rightarrow \bot$ and \top still as **lowest and highest** (b) project along the \top/\bot direction $\Rightarrow \bot$ and \top **coincide in the center**

difference 2: the general direction of the entailments

the square is a Hasse diagram \Rightarrow general entailment direction is upwards

(a) project along other direction \Rightarrow general entailment direction is still **upwards** (b) project along the \top/\bot direction \Rightarrow **no general entailment direction** anymore

difference 3: the visualization of the levels

the square is a Hasse diagram \Rightarrow uniform (horizontal) levels

(a) project along other direction \Rightarrow still **uniform** (horizontal) levels (b) project along the \top/\bot direction \Rightarrow **mixing** of levels

- \bullet vertex-first projection along the \top/\bot direction (mixing of levels)
- this can be a **parallel** projection
 - from cube to **hexagon**
 - interlocking same-sized triangles for contrariety and subcontrariety
- this can be a **perspective** projection
 - from cube to 'nested triangles'
 - nested different-sized triangles for contrariety and subcontrariety

KU LEUVEN

Modal Logic S5	Propositional Logic	bitstrings level 1	bitstrings level 3	Propositional Logic	Modal Logic S5
$\Box p$	$p \wedge q$	1000	0111	$\neg (p \land q)$	$\neg \Box p$
$\neg \Box p \wedge p$	$\neg (p \rightarrow q)$	0100	1011	$p \rightarrow q$	$\Box p \lor \neg p$
$\Diamond p \wedge \neg p$	$\neg (p \leftarrow q)$	0010	1101	$p \leftarrow q$	$\neg \Diamond p \lor p$
$\neg \Diamond p$	$\neg (p \lor q)$	0001	1110	$p \lor q$	$\Diamond p$
Modal Logic S5	Propositional Logic	bitstrings level 2/0	bitstrings level 2/4	Propositional Logic	Modal Logic S5
p	p	1100	0011	$\neg p$	$\neg p$
$\Box p \lor (\Diamond p \land \neg p)$	q	1010	0101	$\neg q$	$\neg \Diamond p \lor (\neg \Box p \land p)$
$\Box p \lor \neg \Diamond p$	$p \leftrightarrow q$	1001	0110	$\neg(p \leftrightarrow q)$	$\neg \Box p \land \Diamond p$
$\Box p \land \neg \Box p$	$p \wedge \neg p$	0000	1111	$p \lor \neg p$	$\Box p \lor \neg \Box p$

KU LEUVEN

- vertex-first parallel projection
- from 4D hypercube to 3D rhombic dodecahedron (RDH)
 - along the 0000—1111 axis \Rightarrow Aristotelian RDH
 - along the $1001-0110 \text{ axis} \Rightarrow \text{Hasse RDH}$

(Smessaert, Demey)

(Zellweger)

cube	+	octahedron	=	cuboctahedron	$\stackrel{dual}{\Longrightarrow}$	rhombic dodecahedron
Platonic		Platonic		Archimedean		Catalan
6 faces 8 vertices 12 edges		8 faces 6 vertices 12 edges		14 faces 12 vertices 24 edges		12 faces 14 vertices 24 edges

cube: $4 \times L1 + 4 \times L3$ / octahedron: $6 \times L2$ / center: $1 \times L0 + 1 \times L4$

nested tetrahedron (NTH)
(Dubois & Prade, Ciucci, Lewis Carroll, Moretti)
 4 faces + 4 vertices + 6 edges
 vertex-first perspective projection
 of a 4D hypercube along the 0000—1111 axis

Introduction to Logical Geometry - Part 3

logical levels are geometrically represented as horizontal planes orthogonal to the vertical implication direction

Congruence Principle

structure of visualization \sim represented logical structure

Representing levels in Aristotelian RDH

levels are **not** parallel planes levels are **not** geometrical dimensions ↓ Aristotelian RDH is **not** level-preserving (violating the Congruence Principle)

Introduction to Logical Geometry - Part 3

levels are not parallel planes, but are geometrical dimensions

$$\begin{array}{rcl} L1 & \sim & \mbox{zero-dimensionality} & \rightsquigarrow & \mbox{4 vertices} \\ L2 & \sim & \mbox{one-dimensionality} & \rightsquigarrow & \mbox{midpoints of 6 edges} \\ L3 & \sim & \mbox{two-dimensionality} & \rightsquigarrow & \mbox{midpoints of 4 faces} \\ & & & & \\ & & & & \\ & & & \\ & &$$

Introduction to Logical Geometry - Part 3

- the contradiction relation is symmetric and functional
 - Aristotelian diagrams (usually) represent CD by central symmetry
 - contradictory bitstrings are located at diametrically opposed vertices at the same distance from the diagram's centre
- Congruence Principle: logical distance \sim geometrical distance:
 - Hamming distance: $d_H(b, b') :=$ number of bit values switched
 - Euclidean distance: $d_{RDH}(b, b') := d_E(c_{RDH}(b), c_{RDH}(b'))$
 - $c_{RDH}(b) :=$ Euclidean coordinates of the vertex representing b in RDH
 - $d_H(b_1, b_2) < d_H(b_3, b_4) \implies d_{RDH}(b_1, b_2) < d_{RDH}(b_3, b_4)$
- contradiction relation = **strongest** opposition relation
 - contradiction = switching all bit values = maximal Hamming distance
 - ullet congruence: maximal logical distance \sim maximal geometrical distance
 - $c_{RDH}(b)$ is farthest removed from $c_{RDH}(\neg b)$
 - $\arg \max_{x \in \mathbb{B}_4} d_H(b, x) = \neg b = \arg \max_{x \in \mathbb{B}_4} d_{RDH}(b, x)$

KU LEUVEN

L1-L3 contradiction L2-L2 contradiction central symmetry central symmetry maximal distance ↓ RDH observes the Congruence Principle

L1-L3 contradiction L2-L2 contradiction no central symmetry central symmetry no maximal distance ↓ NTH violates the Congruence Principle

Introduction to Logical Geometry - Part 3

3 distinct logical relations (opposition/implication) versus 3 distinct/coinciding visual components (line/arrow)

Apprehension Principle:

the content/structure of the visualisation can readily and correctly be perceived and understood

Introduction to Logical Geometry - Part 3

no triples of collinear vertices no visual overlap/coincidence ↓ RDH observes Apprehension triples of collinear vertices visual overlap/coincidence \Downarrow NTH violates Apprehension

KU LEUVEN

Thank you! Questions?

More info: www.logicalgeometry.org

KU LEUVEN