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Structure of the course 2

1. Basic Concepts and Bitstring Semantics

2. Abstract-Logical Properties of Aristotelian Diagrams, Part |
IS” Aristotelian, Opposition, Implication and Duality Relations

3. Visual-Geometric Properties of Aristotelian Diagrams
I2" Informational Equivalence, Symmetry and Distance

4. Abstract-Logical Properties of Aristotelian Diagrams, Part Il
5" Boolean Structure and Logic-Sensitivity

5. Case Studies and Philosophical Outlook
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Informational equivalence 3

@ Aristotelian diagrams represent logical structure/information
o Aristotelian relations

> classical square: 2 CD, 1 C, 1 SC, 2 SA
> degenerate square: 2 CD

e underlying Boolean structure

> classical square: Boolean closure is (isomorphic to) Bs
> degenerate square: Boolean closure is (isomorphic to) By

o diagrams belonging to different Aristotelian families
are not informationally equivalent

o they visualize different logical structures
o differences between diagrams « differences between logical structures

e Jill Larkin and Herbert Simon (1987),
Why a Diagram is (Sometimes) Worth 10.000 Words
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Informational and computational equivalence 4

@ if we focus on diagrams belonging to the same Aristotelian family,
we notice that different authors still use vastly different diagrams:
o logical properties of the diagram are fully determined
e visual-geometric properties are still seriously underspecified
= various design choices possible

o multiple diagrams for the same formulas and logical system are:

o informationally equivalent

» contain the same logical information
> visualize one and the same logical structure

o not necessarily computationally/cognitively equivalent:
> one diagram might be more helpful/useful than the other ones
(ease of access to the information contained in the diagram)
» visual differences might influence diagrams’ effectiveness
(user comprehension of the underlying logical structure)
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Informational and computational equivalence 5
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standard and alternative visualisations of the JSB family
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Informational and computational equivalence

conTRARY.

\j“"““w ,
Ty

} Centrede projection
'\ (projection par # & gauche)
"l \ .
ol H
o )
R
(/ i 1 \
L R
/o
o 1
; a - k
b Ak [ gel__nal e
I+ Ao Rectangle k (8<h)
de: i
s universels |
P
o Hd S<P)
o e
o e
" on

L
0:5
o

0s
17

1e

ng.
Rectangle des
o

[
sep)

standard and alternative visualisations of the Keynes-Johnson family
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Informational and computational equivalence 7

How to choose among informationally equivalent diagrams?

= rely on general cognitive principles (Corin Gurr, Barbara Tversky):

@ information selection/ommission and simplification/distortion

e Apprehension Principle: the content/structure of the visualization can
readily and correctly be perceived and understood

e Congruence Principle: the content/structure of the visualization
corresponds to the content/structure of the desired mental
representation

[abstract-logical] [visual-geometric]

properties, relations <— isomorphism — shape characteristics
among sets of formulas congruence of the diagrams

KU LEUVEN
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Informational and computational equivalence 8

@ a good diagram simultaneously engages the user's
logical and visual cognitive systems

e facilitate inferential or heuristic free rides (Atsushi Shimojima)
o logical properties are directly manifested in the diagram’s visual features
e user can grasp these properties with little cognitive effort

= “you don't have to reason about it, you just see it!"

@ suppose that Aristotelian diagrams D1 and D2 have differerent shapes:
o shape of D1 more clearly isomorphic to subject matter
o shape of D2 less clearly isomorphic to subject matter

o then D1 will trigger more heuristics than D2:

e ceteris paribus, D1 will be a more effective visualization than D2
e D1 and D2 are not computationally/cognitively equivalent
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Logic versus geometry in Aristotelian diagrams: setup 9

@ two assumptions (satisfied by nearly all diagrams in the literature):

o the fragment is closed under negation (if p € F then —¢p € F)
e negation is visualized by means of central symmetry
(¢ and —p occupy diametrically opposed points in the diagram)

@ since the fragment is closed under negation, it can be seen

e as consisting of 2n formulas
e as consisting of n pairs of contradictory formulas (PCDs)

Opvop

Op A O—p
KU LEUVEN
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Configurations of PCDs 10

@ number of configurations of n PCDs: 2" x n!

o the n PCDs can be ordered in n! different ways
e each of the n PCDs has 2 orientations: (¢, ) vs. (—¢p, @)

o strictly based on the logical properties of the fragment

@ independent of any concrete visualization

@ example: for n = 2 PCDs, there are 2™ x n! = 8 configurations

op Op op —Op —op Op —op —O0p
—op —0p —op Op op —Op op Op
Op op Op —op —~0p oOp —0p ~op
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Geometrical symmetries 11

@ polygon/polyhedron P to visualize an n-PCD logical fragment
= 2n vertices (~ 2n formulas) and central symmetry (~ contradiction)

P has a symmetry group Sp

e contains the reflectional and rotational symmetries of P
o the cardinality |Sp| measures how ‘symmetric’ P is

strictly based on the geometrical properties of the polygon/polyhedron

independent of the logical structure that is being visualized

example: a square has 8 reflectional /rotational symmetries, i.e. [Ssq| = 8

1 2 4 1 3 4 2 3

hY J +)
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Interaction between logic and geometry 12

@ visualize n-PCD fragment by means of P

o logical number: 2" x n!

e geometrical number: |Sp|

@ 2" xn!>|Sp| (typically: > instead of >)

e every symmetry of P can be seen as
the result of permuting/changing the orientation of the PCDs

e but typically not vice versa
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Interaction between logic and geometry 13

@ example

o reflect the hexagon around the axis defined by (p and O—p
o permute the PCDs (Op,0-p) and (Op VvV O-p, Op A O—p)

Op v O—p
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Interaction between logic and geometry 14

@ example

e change the orientation of the PCD (Op v O—-p, Op A O—p)
e no reflectional /rotational symmetry

opvo—p

opv o p
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Fundamental forms 15

e work up to symmetry: 2‘7‘15;"” fundamental forms

e diagrams with same fundamental form
= reflectional/rotational variants of each other

o diagrams with different fundamental forms:
= not reflectional /rotational variants of each other

@ one n-PCD fragment, two different visualizations P and P’

P is less symmetric than P’

& [Sp| < |Sp

n | n |
<:>2><n.>2><n.

el ~ TSl

< P has more fundamental forms than P’
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Diagram quality 16

@ diagrams P and P’ for the same n-PCD fragment

o P is less symmetric than P’, i.e. has more fundamental forms than P’
e P makes some visual distinctions that are not made by P’

o the diagrammatic quality of P and P’ depends on whether these
additional visual distinctions correspond to any logical distinctions in
the underlying fragment (recall the Congruence Principle)

o if there are such logical distinctions in the fragment:

e P visualizes these logical distinctions (different fundamental forms)
o P’ collapses these logical distinctions (same fundamental form)
o P is better visualization than P’

@ if there are no such logical distinctions in the fragment:
e no need for any visual distinctions either

o different fundamental forms of P: by-products of its lack of symmetry
o P’ is better visualization than P
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Aristotelian diagrams with 2 PCDs 17

n!x2"

fundamental forms
[Sp|

@ in general:

@ 2-PCD fragment = 2! x 22 = 8 configurations of PCDs

@ some visualizations that have been used in the literature:

21x 22 8

e square: |Sy| =8 ST =8 = 1 fundamental form
o (proper) rectangle: |Siect| = 4 ?«'Siii = 2 = 2 fundamental forms

@ Aristotelian families of 2-PCD fragments:

o classical
o degenerate

KU LEUVEN
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Square visualization of a classical 2-PCD fragment 18

@ 1 fundamental form

@ no visual distinction between long and short edges
(all edges are equally long)
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Rectangle visualization of a classical 2-PCD fragment 19

@ 2 fundamental forms

@ visual distinction: long vs short edges

o (sub)contrariety on long edges, subalternation on short edges
o (sub)contrariety on short edges, subalternation on long edges

op o—p
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Visualizing a classical 2-PCD fragment 20

@ is there a distinction between (sub)contrariety and subalternation?

@ yes, there is
e complementary perspectives on the classical ‘square’ of opposition:

> as a theory of negation (commentaries on De Interpretatione)
> as a theory of logical consequence (commentaries on Prior Analytics)

e focus on different Aristotelian relations:

> theory of negation = focus on (sub)contrariety
> theory of consequence = focus on subalternation

o rectangle does justice to these differences (square would collapse them)

@ no, there isn’t
o logical unity of all the Aristotelian relations

> every (sub)contrariety yields two corresponding subalternations
> every subalternation yields corresponding contrariety and subcontrariety

e square does justice to this unity
(rectangle would introduce artificial differences)
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Aristotelian diagrams with 3 PCDs 21

. 1 n
in general: ”‘|'SX732| fundamental forms

3-PCD fragment = 3! x 22 = 48 configurations

@ some visualizations that have been used in the literature:

a1y 03

o hexagon: |She| = 12 TS:Q\ = 18 = 4 fundamental forms
3

e octahedron: |S,..| = 48 f"sii‘ = 2% = 1 fundamental form

Aristotelian families of 3-PCD fragments:
Jacoby-Sesmat-Blanché (JSB)
Sherwood-Czezowski (SC)
unconnected-4 (U4)

unconnected-8 (U8)

unconnected-12 (U12)
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Introduction to Logical Geometry — Part 3



Hexagon visualization of a JSB 3-PCD fragment 22

@ 4 fundamental forms

@ visual distinction:

o all three contrariety edges equally long
e one contrariety edge longer than the other two

Opvop

op vop
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Octahedron visualization of a JSB 3-PCD fragment 23

@ 1 fundamental form

@ no visual distinction between long and short contrariety edges
(all contrariety edges are equally long)

Op A O
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Visualizing a JSB 3-PCD fragment 24

are there different kinds of contrariety?

@ usually, the contrary formulas are modeled as elements of B3

e bitstrings 100, 010 and 001
o all contrarieties are equally ‘strong’

e for linguistic/cognitive reasons, it is sometimes useful to model
the contrary formulas as elements of, say, Bs

e bitstrings 10000, 01110, 00001
e the contrariety 10000-00001 is ‘stronger’ than the two other contrarieties

@ in the hexagon: edge length «~ contrariety strength (Congruence)

@ in the octahedron: no distinction possible (collapse)

= hexagon is the preferred visualization
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Logic versus geometry in Aristotelian diagrams: conclusion 25

@ systematic approach to informationally equivalent Aristotelian diagrams:
logic (PCD structure) vs geometry (symmetry group)

applied to some Aristotelian families of 2-PCD and 3-PCD fragments

in general: to visualize an n-PCD fragment, consider a polytope
e that is centrally symmetric
e that has 2n vertices
o that has a symmetry group of order 2" x n!

= cross-polytope of dimension n = 1 fundamental form
(dual of the n-dimensional hypercube)

diagrammatically ineffective (>3D beyond human visual cognition)

but theoretically important: first few cases:

e n = 2: 2D cross-polytope: dual of the square: square
e n = 3: 3D cross-polytope: dual of the cube: octahedron
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Aristotelian diagrams versus Hasse diagrams 26

@ a Hasse diagram visualizes a partially ordered set (P, <):
< is reflexive: forallz e P:ax<x
< is transitive: forall z,y,ze Pz <yy<z=zx<z
< is antisymmetric: forall z,y e P:x<yy<z=x=y

@ Hasse diagrams in logic and mathematics:
divisibility poset x <y iff x divides y
subgroup lattices x <y iff 2 is a subgroup of y
logic/Boolean algebra z < y iff = logically entails y

@ we focus on Boolean algebras

o always have a Hasse diagram that is centrally symmetric
e can be partitioned into levels Lo, L1, Lo, ..., L, 1, L,

KU LEUVEN
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Aristotelian diagrams versus Hasse diagrams 27

@ three key differences between Aristotelian and Hasse diagrams:
@ the non-contingent formulas | and T
@ the general direction of the entailments
© visualization of the levels

o first difference: the non-contingent formulas L and T

e Hasse diagrams: visualized, as begin-/end-points of the <-ordering

o Aristotelian diagrams: L and T are usually not visualized

o Sauriol, Smessaert, etc.: 1 and T are in Aristotelian diagrams after all:
L and T coincide in the diagram's center of symmetry

OpV Op T
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Aristotelian diagrams versus Hasse diagrams 28

@ second difference: the general direction of the entailments

o Hasse diagrams: all entailments go upwards
o Avristotelian diagrams: no single shared direction

o third difference: visualization of the levels

o Hasse diagrams: levels L; are visualized as horizontal hyperplanes
o Aristotelian diagrams: no uniform visualization of levels

OpV Op T

Cp O op OpVOp  op
op . o—p Op Sp A o—p Op
Op N\ QO—p 1
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Visual-cognitive aspects 29

@ recall the Congruence Principle:

o the content/structure of the visualization corresponds to the
content/structure of the desired mental representation
o cf. Barbara Tversky et al.

o different visual properties «~ different goals

o Aristotelian diagrams: visualize the Aristotelian relations
o Hasse diagrams: visualize the structure of the entailment ordering <

@ Hasse diagrams: strong congruence between
logical and visual properties

o shared direction of entailment (vertically upward)
o levels as horizontal lines/planes

> if o, € L;, then ¢ L) and p L ¢
» formulas of a single level are independent of each other w.r.t. <
> level = horizontal = orthogonal to the vertical <-direction

KU LEUVEN
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Visual-cognitive aspects 30

@ consider the three S5-formulas Cp, O—p, Op A O—p
o Hasse perspective: all belong to L; = horizontal line
o Aristotelian perspective: all contrary to each other
@ the contrariety between [Ip and [J—p overlaps with the two others
@ serious violation of the Apprehension Principle
o direct reason: the three formulas lie on a single line
@ this is solved in the Aristotelian diagram:

e move Op A O—p away from the line between [p and C—p
o triangle of contrarieties = in line with Apprehension Principle
e mixing of levels, no single entailment direction, L moves to middle

Opnd—p
Op. BPVODP  Op Op v Op Op
gpvO=p
—— M\ - \ -
op T op oOp op Op op
gpvop
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Logico-geometrical aspects 31

@ we restrict ourselves to Aristotelian diagrams that are Boolean closed

@ the Hasse diagram of B3 can be drawn as a three-dimensional cube

o general entailment direction runs from 000 to 111
o logical levels «~ planes orthogonal to the entailment direction

010 110

111

011

000 gl

001 101
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Logico-geometrical aspects 32

@ in (a) the cube consists of 4 pairs of diametrically opposed vertices:
o 3 contingent pairs: 101—010, 110—001, 011—100
e 1 non-contingent pair: 000—111
@ each pair defines a projection axis for vertex-first parallel projection:

e in (b) projection along 000—111 axis
e in (c) projection along 101—010 axis

KU LEUVEN
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Logico-geometrical aspects 33

@ the vertex-first projections from 3D cube to 2D hexagon:
(a) projection along 000—111 = Aristotelian diagram (JSB hexagon)
(b) projection along 101—010 = Hasse diagram (almost)

o if we slightly ‘nudge’ the projection axis 101—010, we get:
(c) projection ‘along’ 101—010 = Hasse diagram
Y Y Y

(a) (b) ©)
101 111 111

100 001 110 011
110 101 011

100 010 001
110 011 100 001

010 000 000
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Logico-geometrical aspects 34

@ both Aristotelian and Hasse diagram are
vertex-first parallel projections of cube:

o Aristotelian diagram: project along the entailment direction (000—111)
o Hasse diagram: project along another direction (101—010)

o recall the dissimilarities between Aristotelian and Hasse diagrams:

@ the position of 1 and T
@ the general direction of the entailments
© the visualization of the levels

@ these three differences turn out to be interrelated:
different manifestations of a single choice (projection axis)

@ now: illustrate these differences by means of
a more basic vertex-first projection (from 2D square to 1D line)

KU LEUVEN
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Logico-geometrical aspects 35

difference 1: the position of L and T

the square is a Hasse diagram = 1 and T as lowest and highest point

(a) project along other direction = 1 and T still as lowest and highest
(b) project along the T /L direction = L and T coincide in the center

a b
e 1 11 ©) 1
16 or— 10301 10 01
00 00 00
1
M0—=0
00
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Logico-geometrical aspects 36

difference 2: the general direction of the entailments

the square is a Hasse diagram = general entailment direction is upwards

(a) project along other direction = general entailment direction is still upwards
(b) project along the T /L direction = no general entailment direction anymore

a b
@ 1 ® b
10}= 01 10/ 01
00 00 do
11
10 = 01
00
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Logico-geometrical aspects 37

difference 3: the visualization of the levels

the square is a Hasse diagram = uniform (horizontal) levels

(a) project along other direction = still uniform (horizontal) levels
(b) project along the T /L direction = mixing of levels

a b
e 1 11 ©) 1
16 or— 10301 10 01
00 00 00
1
M0—=0
00
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Logico-geometrical aspects 38

@ vertex-first projection along the T /L direction (mixing of levels)

@ this can be a parallel projection
e from cube to hexagon
e interlocking same-sized triangles for contrariety and subcontrariety

@ this can be a perspective projection
e from cube to ‘nested triangles’
o nested different-sized triangles for contrariety and subcontrariety

% 0 Y

Y 1
KU LEUVEN
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From cube (B;) to hypercube (B,) 39

T (a1

G0k ] 1o
{0101) (o1
{0001y {1001)
"y T (1110)
{0071) 1010
*3 0100) (1100
XZ
{oooo) ®q (100
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Bitstrings of length 4 40

Modal Logic Propositional | bitstrings | bitstrings | Propositional Modal Logic
S5 Logic levell | level3 Logic S5
Op pAg 1000 0111 —(pAq) —p
TpAp ~“(p-q) 0100 1011 prP-q OpV —p
CpATp —(p-q) 0010 1101 pPeq ~GpVp
—Op —(pV q) 0001 1110 pVa Sp
Modal Logic Propositional | bitstrings | bitstrings | Propositional Modal Logic
S5 Logic level 2/0 | level 2/4 Logic S5
P P 1100 0011 —p P
OpV (©ph—p) q 1010 0101 —q —OpV (OpAp)
OpV —$p peq 1001 0110 —(p-q) —pAop
OpA—Op ph—p ' pVp OpV —p
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From hypercube to rhombic dodecahedron 41

o vertex-first parallel projection
e from 4D hypercube to 3D rhombic dodecahedron (RDH)

o along the 0000—1111 axis = Avristotelian RDH (Smessaert, Demey)
o along the 1001—0110 axis = Hasse RDH (Zellweger)

KU LEUVEN
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The rhombic dodecahedron (RDH) 42

ual

cube + octahedron = cuboctahedron =— rhombic
dodecahedron
Platonic Platonic Archimedean Catalan
6 faces 8 faces 14 faces 12 faces
8 vertices 6 vertices 12 vertices 14 vertices
12 edges 12 edges 24 edges 24 edges
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Bitstrings in the rhombic dodecahedron 43

cube: 4 x L1 + 4 x L3 / octahedron: 6 x L2 / center: 1 x LO + 1x L4
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Alternative cube-based visualisations of B, 44

tetra(kis)-hexahedron rhombic dodecahedron tetra-icosahedron

THH RDH TIH
(Sauriol /Pellissier) (Smessaert/Demey) (Moretti)
14 vertices 14 vertices 14 vertices
24 faces/36 edges 12 faces/24 edges 24 faces/36 edges
convex convex non-convex
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Alternative tetrahedron-based visualisation of B, 45

ey 1001 0001

1101 1011

"% 10 0011
0101

1110 11

0010

0110

0100

nested tetrahedron (NTH)
(Dubois & Prade, Ciucci, Lewis Carroll, Moretti)
4 faces + 4 vertices + 6 edges

vertex-first perspective projection
of a 4D hypercube along the 0000—1111 axis
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Representing levels in 2D /3D Hasse diagrams 46

logical levels are geometrically represented as horizontal planes
orthogonal to the vertical implication direction

Congruence Principle
structure of visualization ~ represented logical structure
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Representing levels in Aristotelian RDH 47

0o

levels are not parallel planes
levels are not geometrical dimensions

4

Aristotelian RDH is not level-preserving
(violating the Congruence Principle)
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Representing levels in NTH 48

1100 4

0111

0110 ‘

levels are not parallel planes, but are geometrical dimensions

L1 ~ zero-dimensionality ~~ 4 vertices
L2 ~ one-dimensionality ~» midpoints of 6 edges
L3 ~ two-dimensionality ~» midpoints of 4 faces

4

NTH is level-preserving
(observing the Congruence Principle)
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Representing contradiction in RDH 49

@ the contradiction relation is symmetric and functional
o Aristotelian diagrams (usually) represent CD by central symmetry
e contradictory bitstrings are located at diametrically opposed vertices at
the same distance from the diagram’s centre

@ Congruence Principle: logical distance ~ geometrical distance:
e Hamming distance: dy(b,b") := number of bit values switched
o Euclidean distance: dRDH(b, b/) = dE(CRDH(b)7CRDH(b/))
o crpp(b) := Euclidean coordinates of the vertex representing b in RDH

o dy(b1,b2) <dp(bs,bs) = drpu(b1,b2) < drpm(bs,bs)

@ contradiction relation = strongest opposition relation
e contradiction = switching all bit values = maximal Hamming distance
e congruence: maximal logical distance ~ maximal geometrical distance
o crpp(b) is farthest removed from crpp (—b)

o argmax,cp, dy (b, x) = —b = argmax,ep, drpy (b, x)
KU LEUVEN
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Representing contradiction in RDH 50

#, 1001
Y
% .
110 0001
1011 ” A
\. 1100 " 1010 k
4 0101 0o
o0
»
- »
o111
v 0110

L1-L3 contradiction
central symmetry
maximal distance

L2-12 contradiction
central symmetry
maximal distance

RDH observes the Congruence Principle
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Representing contradiction in NTH 51

1001 e
.. pu—— 4 4
1100 ! e 1010 i
SRT .
-
‘_' § o110
L1-L3 contradiction L2-12 contradiction
no central symmetry central symmetry
no maximal distance no maximal distance

NTH violates the Congruence Principle
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Representing opposition and implication 52

contrariety
L L]
1000 1001 0001

subalternation subalternation

3 distinct logical relations (opposition/implication)
versus

3 distinct/coinciding visual components (line/arrow)

Apprehension Principle:
the content/structure of the visualisation
can readily and correctly be perceived and understood
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Representing opposition and implication 53

no triples of collinear vertices triples of collinear vertices
no visual overlap/coincidence visual overlap/coincidence
RDH observes Apprehension NTH violates Apprehension

KU LEUVEN
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The End 54

Thank you! Questions?

More info: www.logicalgeometry.org
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