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Structure of the course 2

1. Basic Concepts and Bitstring Semantics

2. Abstract-Logical Properties of Aristotelian Diagrams, Part I
� Aristotelian, Opposition, Implication and Duality Relations

3. Visual-Geometric Properties of Aristotelian Diagrams
� Informational Equivalence, Symmetry and Distance

4. Abstract-Logical Properties of Aristotelian Diagrams, Part II
� Boolean Structure and Logic-Sensitivity

5. Case Studies and Philosophical Outlook
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Informational equivalence 3

Aristotelian diagrams represent logical structure/information
Aristotelian relations

I classical square: 2 CD, 1 C, 1 SC, 2 SA
I degenerate square: 2 CD

underlying Boolean structure
I classical square: Boolean closure is (isomorphic to) B3

I degenerate square: Boolean closure is (isomorphic to) B4

diagrams belonging to different Aristotelian families
are not informationally equivalent

they visualize different logical structures
differences between diagrams! differences between logical structures

Jill Larkin and Herbert Simon (1987),
Why a Diagram is (Sometimes) Worth 10.000 Words
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Informational and computational equivalence 4

if we focus on diagrams belonging to the same Aristotelian family,
we notice that different authors still use vastly different diagrams:

logical properties of the diagram are fully determined
visual-geometric properties are still seriously underspecified
⇒ various design choices possible

multiple diagrams for the same formulas and logical system are:

informationally equivalent
I contain the same logical information
I visualize one and the same logical structure

not necessarily computationally/cognitively equivalent:
I one diagram might be more helpful/useful than the other ones

(ease of access to the information contained in the diagram)
I visual differences might influence diagrams’ effectiveness

(user comprehension of the underlying logical structure)
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Informational and computational equivalence 5

standard and alternative visualisations of the JSB family
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Informational and computational equivalence 6

standard and alternative visualisations of the Keynes-Johnson family
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Informational and computational equivalence 7

How to choose among informationally equivalent diagrams?

⇒ rely on general cognitive principles (Corin Gurr, Barbara Tversky):

information selection/ommission and simplification/distortion

Apprehension Principle: the content/structure of the visualization can
readily and correctly be perceived and understood

Congruence Principle: the content/structure of the visualization
corresponds to the content/structure of the desired mental
representation

[abstract-logical] [visual-geometric]

properties, relations ←− isomorphism −→ shape characteristics
among sets of formulas congruence of the diagrams
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Informational and computational equivalence 8

a good diagram simultaneously engages the user’s
logical and visual cognitive systems

facilitate inferential or heuristic free rides (Atsushi Shimojima)

logical properties are directly manifested in the diagram’s visual features
user can grasp these properties with little cognitive effort
⇒ “you don’t have to reason about it, you just see it!”

suppose that Aristotelian diagrams D1 and D2 have differerent shapes:

shape of D1 more clearly isomorphic to subject matter
shape of D2 less clearly isomorphic to subject matter

then D1 will trigger more heuristics than D2:

ceteris paribus, D1 will be a more effective visualization than D2
D1 and D2 are not computationally/cognitively equivalent
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Logic versus geometry in Aristotelian diagrams: setup 9

two assumptions (satisfied by nearly all diagrams in the literature):
the fragment is closed under negation (if ϕ ∈ F then ¬ϕ ∈ F)
negation is visualized by means of central symmetry
(ϕ and ¬ϕ occupy diametrically opposed points in the diagram)

since the fragment is closed under negation, it can be seen
as consisting of 2n formulas
as consisting of n pairs of contradictory formulas (PCDs)
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Configurations of PCDs 10

number of configurations of n PCDs: 2n × n!

the n PCDs can be ordered in n! different ways
each of the n PCDs has 2 orientations: (ϕ,¬ϕ) vs. (¬ϕ,ϕ)

strictly based on the logical properties of the fragment
independent of any concrete visualization

example: for n = 2 PCDs, there are 2n × n! = 8 configurations
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Geometrical symmetries 11

polygon/polyhedron P to visualize an n-PCD logical fragment
⇒ 2n vertices (∼ 2n formulas) and central symmetry (∼ contradiction)

P has a symmetry group SP
contains the reflectional and rotational symmetries of P
the cardinality |SP | measures how ‘symmetric’ P is

strictly based on the geometrical properties of the polygon/polyhedron
independent of the logical structure that is being visualized
example: a square has 8 reflectional/rotational symmetries, i.e. |Ssq| = 8
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Interaction between logic and geometry 12

visualize n-PCD fragment by means of P

logical number: 2n × n!

geometrical number: |SP |

2n × n! ≥ |SP | (typically: > instead of ≥)

every symmetry of P can be seen as
the result of permuting/changing the orientation of the PCDs
but typically not vice versa
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Interaction between logic and geometry 13

example
reflect the hexagon around the axis defined by �p and ♦¬p
permute the PCDs (♦p,�¬p) and (�p ∨�¬p,♦p ∧ ♦¬p)
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Interaction between logic and geometry 14

example
change the orientation of the PCD (�p ∨�¬p,♦p ∧ ♦¬p)
no reflectional/rotational symmetry
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Fundamental forms 15

work up to symmetry: 2n×n!
|SP | fundamental forms

diagrams with same fundamental form
⇒ reflectional/rotational variants of each other

diagrams with different fundamental forms:
⇒ not reflectional/rotational variants of each other

one n-PCD fragment, two different visualizations P and P ′

P is less symmetric than P ′

⇔ |SP | < |SP ′ |

⇔ 2n×n!
|SP | > 2n×n!

|SP′ |

⇔ P has more fundamental forms than P ′
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Diagram quality 16

diagrams P and P ′ for the same n-PCD fragment
P is less symmetric than P ′, i.e. has more fundamental forms than P ′
P makes some visual distinctions that are not made by P ′

the diagrammatic quality of P and P ′ depends on whether these
additional visual distinctions correspond to any logical distinctions in
the underlying fragment (recall the Congruence Principle)

if there are such logical distinctions in the fragment:
P visualizes these logical distinctions (different fundamental forms)
P ′ collapses these logical distinctions (same fundamental form)
P is better visualization than P ′

if there are no such logical distinctions in the fragment:
no need for any visual distinctions either
different fundamental forms of P: by-products of its lack of symmetry
P ′ is better visualization than P
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Aristotelian diagrams with 2 PCDs 17

in general: n!×2n
|SP | fundamental forms

2-PCD fragment ⇒ 2!× 22 = 8 configurations of PCDs

some visualizations that have been used in the literature:

square: |Ssq| = 8 2!×22
|Ssq| = 8

8 = 1 fundamental form

(proper) rectangle: |Srect| = 4 2!×22
|Srect| =

8
4 = 2 fundamental forms

Aristotelian families of 2-PCD fragments:
classical
degenerate
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Square visualization of a classical 2-PCD fragment 18

1 fundamental form

no visual distinction between long and short edges
(all edges are equally long)
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Rectangle visualization of a classical 2-PCD fragment 19

2 fundamental forms

visual distinction: long vs short edges
(sub)contrariety on long edges, subalternation on short edges
(sub)contrariety on short edges, subalternation on long edges
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Visualizing a classical 2-PCD fragment 20

is there a distinction between (sub)contrariety and subalternation?

yes, there is
complementary perspectives on the classical ‘square’ of opposition:

I as a theory of negation (commentaries on De Interpretatione)
I as a theory of logical consequence (commentaries on Prior Analytics)

focus on different Aristotelian relations:
I theory of negation ⇒ focus on (sub)contrariety
I theory of consequence ⇒ focus on subalternation

rectangle does justice to these differences (square would collapse them)

no, there isn’t
logical unity of all the Aristotelian relations

I every (sub)contrariety yields two corresponding subalternations
I every subalternation yields corresponding contrariety and subcontrariety

square does justice to this unity
(rectangle would introduce artificial differences)
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Aristotelian diagrams with 3 PCDs 21

in general: n!×2n
|SP | fundamental forms

3-PCD fragment ⇒ 3!× 23 = 48 configurations

some visualizations that have been used in the literature:

hexagon: |Shex| = 12 3!×23
|Shex| =

48
12 = 4 fundamental forms

octahedron: |Socta| = 48 3!×23
|Socta| =

48
48 = 1 fundamental form

Aristotelian families of 3-PCD fragments:
Jacoby-Sesmat-Blanché (JSB)
Sherwood-Czezowski (SC)
unconnected-4 (U4)
unconnected-8 (U8)
unconnected-12 (U12)
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Hexagon visualization of a JSB 3-PCD fragment 22

4 fundamental forms

visual distinction:
all three contrariety edges equally long
one contrariety edge longer than the other two
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Octahedron visualization of a JSB 3-PCD fragment 23

1 fundamental form

no visual distinction between long and short contrariety edges
(all contrariety edges are equally long)
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Visualizing a JSB 3-PCD fragment 24

are there different kinds of contrariety?

usually, the contrary formulas are modeled as elements of B3

bitstrings 100, 010 and 001
all contrarieties are equally ‘strong’

for linguistic/cognitive reasons, it is sometimes useful to model
the contrary formulas as elements of, say, B5

bitstrings 10000, 01110, 00001
the contrariety 10000–00001 is ‘stronger’ than the two other contrarieties

in the hexagon: edge length! contrariety strength (Congruence)
in the octahedron: no distinction possible (collapse)

⇒ hexagon is the preferred visualization
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Logic versus geometry in Aristotelian diagrams: conclusion 25

systematic approach to informationally equivalent Aristotelian diagrams:
logic (PCD structure) vs geometry (symmetry group)
applied to some Aristotelian families of 2-PCD and 3-PCD fragments

in general: to visualize an n-PCD fragment, consider a polytope
that is centrally symmetric
that has 2n vertices
that has a symmetry group of order 2n × n!

⇒ cross-polytope of dimension n ⇒ 1 fundamental form
⇒ (dual of the n-dimensional hypercube)

diagrammatically ineffective (>3D beyond human visual cognition)
but theoretically important: first few cases:

n = 2: 2D cross-polytope: dual of the square: square
n = 3: 3D cross-polytope: dual of the cube: octahedron
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Aristotelian diagrams versus Hasse diagrams 26

a Hasse diagram visualizes a partially ordered set (P,≤):
≤ is reflexive: for all x ∈ P : x ≤ x
≤ is transitive: for all x, y, z ∈ P : x ≤ y, y ≤ z ⇒ x ≤ z
≤ is antisymmetric: for all x, y ∈ P : x ≤ y, y ≤ x⇒ x = y

Hasse diagrams in logic and mathematics:
divisibility poset x ≤ y iff x divides y
subgroup lattices x ≤ y iff x is a subgroup of y
logic/Boolean algebra x ≤ y iff x logically entails y

we focus on Boolean algebras
always have a Hasse diagram that is centrally symmetric
can be partitioned into levels L0, L1, L2, . . . , Ln−1, Ln

Introduction to Logical Geometry – Part 3



Aristotelian diagrams versus Hasse diagrams 27

three key differences between Aristotelian and Hasse diagrams:
1 the non-contingent formulas ⊥ and >
2 the general direction of the entailments
3 visualization of the levels

first difference: the non-contingent formulas ⊥ and >
Hasse diagrams: visualized, as begin-/end-points of the ≤-ordering
Aristotelian diagrams: ⊥ and > are usually not visualized
Sauriol, Smessaert, etc.: ⊥ and > are in Aristotelian diagrams after all:
⊥ and > coincide in the diagram’s center of symmetry
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Aristotelian diagrams versus Hasse diagrams 28

second difference: the general direction of the entailments
Hasse diagrams: all entailments go upwards
Aristotelian diagrams: no single shared direction

third difference: visualization of the levels
Hasse diagrams: levels Li are visualized as horizontal hyperplanes
Aristotelian diagrams: no uniform visualization of levels
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Visual-cognitive aspects 29

recall the Congruence Principle:
the content/structure of the visualization corresponds to the
content/structure of the desired mental representation
cf. Barbara Tversky et al.

different visual properties! different goals
Aristotelian diagrams: visualize the Aristotelian relations
Hasse diagrams: visualize the structure of the entailment ordering ≤

Hasse diagrams: strong congruence between
logical and visual properties

shared direction of entailment (vertically upward)
levels as horizontal lines/planes

I if ϕ,ψ ∈ Li, then ϕ 6≤ ψ and ψ 6≤ ϕ
I formulas of a single level are independent of each other w.r.t. ≤
I level = horizontal ⇒ orthogonal to the vertical ≤-direction
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Visual-cognitive aspects 30

consider the three S5-formulas �p, �¬p, ♦p ∧ ♦¬p
Hasse perspective: all belong to L1 ⇒ horizontal line
Aristotelian perspective: all contrary to each other

the contrariety between �p and �¬p overlaps with the two others
serious violation of the Apprehension Principle
direct reason: the three formulas lie on a single line

this is solved in the Aristotelian diagram:
move ♦p ∧ ♦¬p away from the line between �p and �¬p
triangle of contrarieties ⇒ in line with Apprehension Principle
mixing of levels, no single entailment direction, ⊥ moves to middle
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Logico-geometrical aspects 31

we restrict ourselves to Aristotelian diagrams that are Boolean closed

the Hasse diagram of B3 can be drawn as a three-dimensional cube
general entailment direction runs from 000 to 111
logical levels! planes orthogonal to the entailment direction
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Logico-geometrical aspects 32

in (a) the cube consists of 4 pairs of diametrically opposed vertices:
3 contingent pairs: 101—010, 110—001, 011—100
1 non-contingent pair: 000—111

each pair defines a projection axis for vertex-first parallel projection:
in (b) projection along 000—111 axis
in (c) projection along 101—010 axis
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Logico-geometrical aspects 33

the vertex-first projections from 3D cube to 2D hexagon:
(a) projection along 000—111 ⇒ Aristotelian diagram (JSB hexagon)
(b) projection along 101—010 ⇒ Hasse diagram (almost)

if we slightly ‘nudge’ the projection axis 101—010, we get:
(c) projection ‘along’ 101—010 ⇒ Hasse diagram
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Logico-geometrical aspects 34

both Aristotelian and Hasse diagram are
vertex-first parallel projections of cube:

Aristotelian diagram: project along the entailment direction (000—111)
Hasse diagram: project along another direction (101—010)

recall the dissimilarities between Aristotelian and Hasse diagrams:
1 the position of ⊥ and >
2 the general direction of the entailments
3 the visualization of the levels

these three differences turn out to be interrelated:
different manifestations of a single choice (projection axis)

now: illustrate these differences by means of
a more basic vertex-first projection (from 2D square to 1D line)
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Logico-geometrical aspects 35

difference 1: the position of ⊥ and >

the square is a Hasse diagram ⇒ ⊥ and > as lowest and highest point

(a) project along other direction ⇒ ⊥ and > still as lowest and highest
(b) project along the >/⊥ direction ⇒ ⊥ and > coincide in the center
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Logico-geometrical aspects 36

difference 2: the general direction of the entailments

the square is a Hasse diagram ⇒ general entailment direction is upwards

(a) project along other direction ⇒ general entailment direction is still upwards
(b) project along the >/⊥ direction ⇒ no general entailment direction anymore
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Logico-geometrical aspects 37

difference 3: the visualization of the levels

the square is a Hasse diagram ⇒ uniform (horizontal) levels

(a) project along other direction ⇒ still uniform (horizontal) levels
(b) project along the >/⊥ direction ⇒ mixing of levels
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Logico-geometrical aspects 38

vertex-first projection along the >/⊥ direction (mixing of levels)

this can be a parallel projection
from cube to hexagon
interlocking same-sized triangles for contrariety and subcontrariety

this can be a perspective projection
from cube to ‘nested triangles’
nested different-sized triangles for contrariety and subcontrariety
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From cube (B3) to hypercube (B4) 39
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Bitstrings of length 4 40
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From hypercube to rhombic dodecahedron 41

vertex-first parallel projection
from 4D hypercube to 3D rhombic dodecahedron (RDH)

along the 0000—1111 axis ⇒ Aristotelian RDH (Smessaert, Demey)
along the 1001—0110 axis ⇒ Hasse RDH (Zellweger)
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The rhombic dodecahedron (RDH) 42

cube + octahedron = cuboctahedron dual
=⇒ rhombic

dodecahedron

Platonic Platonic Archimedean Catalan

6 faces 8 faces 14 faces 12 faces
8 vertices 6 vertices 12 vertices 14 vertices
12 edges 12 edges 24 edges 24 edges
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Bitstrings in the rhombic dodecahedron 43

cube: 4 × L1 + 4 × L3 / octahedron: 6 × L2 / center: 1 × L0 + 1× L4
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Alternative cube-based visualisations of B4 44

tetra(kis)-hexahedron rhombic dodecahedron tetra-icosahedron
THH RDH TIH

(Sauriol/Pellissier) (Smessaert/Demey) (Moretti)
14 vertices 14 vertices 14 vertices

24 faces/36 edges 12 faces/24 edges 24 faces/36 edges
convex convex non-convex
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Alternative tetrahedron-based visualisation of B4 45

nested tetrahedron (NTH)
(Dubois & Prade, Ciucci, Lewis Carroll, Moretti)

4 faces + 4 vertices + 6 edges

vertex-first perspective projection
of a 4D hypercube along the 0000—1111 axis
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Representing levels in 2D/3D Hasse diagrams 46

logical levels are geometrically represented as horizontal planes
orthogonal to the vertical implication direction

Congruence Principle
structure of visualization ∼ represented logical structure
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Representing levels in Aristotelian RDH 47

levels are not parallel planes
levels are not geometrical dimensions

⇓
Aristotelian RDH is not level-preserving
(violating the Congruence Principle)
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Representing levels in NTH 48

levels are not parallel planes, but are geometrical dimensions

L1 ∼ zero-dimensionality  4 vertices
L2 ∼ one-dimensionality  midpoints of 6 edges
L3 ∼ two-dimensionality  midpoints of 4 faces

⇓
NTH is level-preserving

(observing the Congruence Principle)
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Representing contradiction in RDH 49

the contradiction relation is symmetric and functional
Aristotelian diagrams (usually) represent CD by central symmetry
contradictory bitstrings are located at diametrically opposed vertices at
the same distance from the diagram’s centre

Congruence Principle: logical distance ∼ geometrical distance:
Hamming distance: dH (b, b′) := number of bit values switched
Euclidean distance: dRDH (b, b′) := dE(cRDH (b), cRDH (b′))
cRDH (b) := Euclidean coordinates of the vertex representing b in RDH

dH(b1, b2) < dH(b3, b4) =⇒ dRDH (b1, b2) < dRDH (b3, b4)

contradiction relation = strongest opposition relation
contradiction = switching all bit values = maximal Hamming distance
congruence: maximal logical distance ∼ maximal geometrical distance
cRDH (b) is farthest removed from cRDH (¬b)

argmaxx∈B4 dH (b, x) = ¬b = argmaxx∈B4 dRDH (b, x)
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Representing contradiction in RDH 50

L1-L3 contradiction L2-L2 contradiction
central symmetry central symmetry
maximal distance maximal distance

⇓
RDH observes the Congruence Principle
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Representing contradiction in NTH 51

L1-L3 contradiction L2-L2 contradiction
no central symmetry central symmetry
no maximal distance no maximal distance

⇓
NTH violates the Congruence Principle
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Representing opposition and implication 52

3 distinct logical relations (opposition/implication)
versus

3 distinct/coinciding visual components (line/arrow)

Apprehension Principle:
the content/structure of the visualisation

can readily and correctly be perceived and understood
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Representing opposition and implication 53

no triples of collinear vertices triples of collinear vertices
no visual overlap/coincidence visual overlap/coincidence

⇓ ⇓
RDH observes Apprehension NTH violates Apprehension
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The End 54

Thank you! Questions?

More info: www.logicalgeometry.org
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