KU LEUVEN

Introduction to Logical Geometry
5. Case Studies and Philosophical Outlook

Lorenz Demey \& Hans Smessaert

ESSLLI 2018, Sofia

Structure of the course

1．Basic Concepts and Bitstring Semantics
2．Abstract－Logical Properties of Aristotelian Diagrams，Part I榢 Aristotelian，Opposition，Implication and Duality Relations

3．Visual－Geometric Properties of Aristotelian Diagrams喀 Informational Equivalence，Symmetry and Distance

4．Abstract－Logical Properties of Aristotelian Diagrams，Part II恽 Boolean Structure and Logic－Sensitivity

5．Case Studies and Philosophical Outlook

"ever since the beginning of the seventeenth century, almost every serious intellectual advance has had to begin with an attack on some Aristotelian doctrine; in logic, this is still true at the present day"

Russell's theory of definite descriptions

- definite descriptions in natural language:
- the president of the United States
- the man standing over there
- the so-and-so
- they can occur in
- subject position
- predicate position
e.g. The president was in Hamburg last week. e.g. Donald Trump is currently still the president.
- Russell's quantificational analysis of 'the A is B '

$$
\exists x(A x \wedge \forall y(A y \rightarrow y=x) \wedge B x)
$$

- Neale's restricted quantifier notation [the $x: A x] B x$

Russell's theory of definite descriptions

- $[$ the $x: A x] B x \equiv_{\mathrm{FOL}}(\mathrm{EX}) \wedge(\mathrm{UN}) \wedge(\mathrm{UV})$

$$
\begin{aligned}
& \text { (EX) } \exists x A x \\
& \text { (UN) } \forall x \forall y((A x \wedge A y) \rightarrow x=y) \\
& \text { (UV) } \forall x(A x \rightarrow B x)
\end{aligned}
$$

there exists at least one A there exists at most one A all A s are B

- much of the subsequent literature on Russell's quantificational theory of definite descriptions has focused on one of these three conditions

Russell's theory of definite descriptions

- $[$ the $x: A x] B x \equiv_{\mathrm{FOL}}(\mathrm{EX}) \wedge(\mathrm{UN}) \wedge(\mathrm{UV})$
(EX) $\exists x A x$
(UN) $\forall x \forall y((A x \wedge A y) \rightarrow x=y)$
(UV) $\forall x(A x \rightarrow B x)$
there exists at least one A there exists at most one A all A s are B
- much of the subsequent literature on Russell's quantificational theory of definite descriptions has focused on one of these three conditions
- what is the linguistic status of (EX)?
- Russell: (ex) is part of the truth conditions of 'the A is B^{\prime} \Rightarrow if (EX) is false, then 'the A is B ' is false
- Strawson: (EX) is a presupposition of 'the A is B^{\prime} \Rightarrow if (EX) is false, then 'the A is B ' does not have a truth value at all

Russell's theory of definite descriptions

- [the $x: A x] B x \equiv_{\mathrm{FOL}}(\mathrm{EX}) \wedge(\mathrm{UN}) \wedge(\mathrm{UV})$
(EX) $\exists x A x$
(UN) $\forall x \forall y((A x \wedge A y) \rightarrow x=y)$
(UV) $\forall x(A x \rightarrow B x)$
there exists at least one A there exists at most one A all A s are B
- much of the subsequent literature on Russell's quantificational theory of definite descriptions has focused on one of these three conditions
- the problem of incomplete definite descriptions (for which (UN) fails) e.g. the book is on the shelf \Rightarrow there is at most one book in the universe
- refinements and alternatives:
- ellipsis theories (Vendler)
- quantifier domain restriction theories (Stanley and Szabó)
- pragmatic theories (Heim, Szabó)

Russell's theory of definite descriptions

- $[$ the $x: A x] B x \equiv_{\mathrm{FOL}}(\mathrm{EX}) \wedge(\mathrm{UN}) \wedge(\mathrm{UV})$
(EX) $\exists x A x$
(UN) $\forall x \forall y((A x \wedge A y) \rightarrow x=y)$
(UV) $\forall x(A x \rightarrow B x)$
there exists at least one A there exists at most one A all A s are B
- much of the subsequent literature on Russell's quantificational theory of definite descriptions has focused on one of these three conditions
- what about non-singular definite descriptions?
- plurals e.g. The wives of King Henry VIII were pale.
- mass nouns
e.g. The water in the Dead Sea is very salty.
- such descriptions also satisfy a version of (Uv) (Sharvy, Brogaard)
- Russell: what is the negation of 'the A is B '?
- law of excluded middle \Rightarrow 'the A is B ' is true or 'the A is not B ' is true
- but if there are no $A \mathrm{~s}$, then both statements seem to be false
- Russell: 'the A is not B ' is ambiguous (scope)
- $\neg \exists x(A x \wedge \forall y(A y \rightarrow y=x) \wedge B x)$
$\neg[$ the $x: A x] B x$
- $\exists x(A x \wedge \forall y(A y \rightarrow y=x) \wedge \neg B x)$
[the $x: A x] \neg B x$
- first interpretation:
- Boolean negation of 'the A is B '
- if there are no $A \mathrm{~s}$, then $[$ the $x: A x] B x$ is false, $\neg[$ the $x: A x] B x$ is true
- second interpretation:
- if there are no A s, then $[$ the $x: A x] B x$ and $[$ the $x: A x] \neg B x$ are false
- not the Boolean negation of 'the A is B^{\prime}
- crucial insight: the two interpretations of 'the A is not B ' distinguished by Russell stand in different Aristotelian relations to 'the A is B '
- [the $x: A x] B x$ and $\neg[$ the $x: A x] B x$ are FOL-contradictory
- [the $x: A x] B x$ and [the $x: A x] \neg B x$ are FOL-contrary
- cf. Haack (1978), Speranza and Horn (2010, 2012), Martin (2016)
- natural move: consider a fourth formula (with two negations)

$$
\begin{array}{rlrl}
\exists x(A x \wedge \forall y(A y \rightarrow y=x) & \wedge B x) & {[\text { the } x: A x] B x} \\
\neg \exists x(A x \wedge \forall y(A y \rightarrow y=x) & \wedge B x) & \neg[\text { the } x: A x] B x \\
\exists x(A x \wedge \forall y(A y \rightarrow y=x) & \wedge \neg B x) & {[\text { the } x: A x] \neg B x} \\
\neg \exists x(A x \wedge \forall y(A y \rightarrow y=x) \wedge \neg B x) & \neg[\text { the } x: A x] \neg B x
\end{array}
$$

- in FOL, these four formulas constitute a classical square

- this is an Aristotelian square
- but also a duality square

An Aristotelian square for definite descriptions

- this square is fully defined in 'ordinary' FOL \Rightarrow acceptable for Russell
- summarizes Russell's solution to puzzle on law of excluded middle
- interesting new formula: $\neg[$ the $x: A x] \neg B x$
- expresses a weak version of 'the A is B '
$\neg[$ the $x: A x] \neg B x \quad \equiv$ FOL $\quad[(\mathrm{EX}) \wedge(\mathrm{UN})] \rightarrow[$ the $x: A x] B x$
- if there is exactly one A, [the $x: A x] B x$ and $\neg[$ the $x: A x] \neg B x$ always have the same truth value
- in all other cases, [the $x: A x] B x$ is always false, whereas $\neg[$ the $x: A x] \neg B x$ is always true
- self-predication principles: what is the logical status of 'the A is A^{\prime} ?
- [the $x: A x] A x$ is not a FOL-tautology
- $\neg[$ the $x: A x] \neg A x$ is a FOL-tautology

Boolean closure of the definite description square

- the Aristotelian square for definite descriptions is not Boolean closed
- its Boolean closure is a JSB hexagon
- importance of the (EX)- and (UN)-conditions

$\neg[$ the $x: A x] \neg B x$
- consider the formulas in the definite descripton square/hexagon
- these formulas induce the partition $\Pi_{T D D}^{\mathrm{FOL}}$:
- $\alpha_{1}:=[$ the $x: A x] B x$
- $\alpha_{2}:=[$ the $x: A x] \neg B x$
- $\alpha_{3}:=\neg[(\mathrm{EX}) \wedge(\mathrm{UN})]$
- example bitstring representations:
- [the $x: A x] B x \equiv_{\text {Fol }} \alpha_{1}$
\rightsquigarrow gets represented as 100
- $\neg[$ the $x: A x] \neg B x \equiv_{\mathrm{FOL}} \alpha_{1} \vee \alpha_{3}$
- logical perspective: the Boolean closure of the square/hexagon has $2^{3}-2=6$ contingent formulas
- conceptual/linguistic perspective: recursive partitioning of logical space

- view $\Pi_{T D D}^{\mathrm{FOL}}$ as the result of a process of recursively partitioning and restricting logical space (Seuren, Jaspers, Roelandt)
- divide the logical universe: $(\mathrm{EX}) \wedge(\mathrm{UN})$ vs. $\neg[(\mathrm{EX}) \wedge(\mathrm{UN})]$
- focus on the logical subuniverse defined by $(\mathrm{EX}) \wedge$ (UN)
- recursively divide this subuniverse: [the $x: A x] B x$ vs. [the $x: A x] \neg B x$

- another look at the ambiguity pointed out by Russell
- 'the A is B ' unambiguously corresponds to [the $x: A x] B x=100$
- relative to the entire universe, its negation is $\neg[$ the $x: A x] B x=011$
- relative to the subuniverse (110), its negation is [the $x: A x] \neg B x=010$
\Rightarrow Russell's two interpretations of 'the A is not B ' correspond to negations of 'the A is B ' relative to two different universes (semantic instead of syntactic characterization)
- Seuren and Jaspers's (2014) defeasible Principle of Complement Selection: "Natural complement selection is primarily relative to the proximate subuniverse, but there are overriding factors."
- overriding factors: intonation, additional linguistic material (Horn 1989)
- the largest prime is not even; in fact, there doesn't exist a largest prime
- the prime divisor of 30 is not even; in fact, 30 has multiple prime divisors
- recall the four categorical statements from syllogistics:

A	all A s are B	$\forall x(A x \rightarrow B x)$
I	some A s are B	$\exists x(A x \wedge B x)$
E	no A s are B	$\forall x(A x \rightarrow \neg B x)$
O	some A s are not B	$\exists x(A x \wedge \neg B x)$

- already implicit in the definite description formulas
- [the $x: A x] B x \quad \equiv_{\mathrm{FOL}} \quad(\mathrm{EX}) \wedge(\mathrm{UN}) \wedge(\mathrm{UV})$
- $\neg[$ the $x: A x] B x \quad \equiv_{\text {FOL }} \quad \neg(\mathrm{EX}) \vee \neg(\mathrm{UN}) \vee \neg(\mathrm{UV})$
- [the $x: A x] \neg B x \quad \equiv_{\mathrm{FOL}} \quad(\mathrm{EX}) \wedge(\mathrm{UN}) \wedge\left(\mathrm{UV}^{*}\right)$
- $\neg[$ the $x: A x] \neg B x \quad \equiv_{\mathrm{FOL}} \quad \neg(\mathrm{EX}) \vee \neg(\mathrm{UN}) \vee \neg\left(\mathrm{UV}^{*}\right)$

$$
\begin{array}{rllll}
(\mathrm{UV}) & \equiv_{\mathrm{FOL}} & \forall x(A x \rightarrow B x) & =\mathrm{A} \\
\neg(\mathrm{UV}) & \equiv_{\mathrm{FOL}} & \exists x(A x \wedge \neg B x) & = & \mathrm{O} \\
\left(\mathrm{UV} \mathrm{~V}^{*}\right) & \equiv_{\mathrm{FOL}} & \forall x(A x \rightarrow \neg B x) & = & \mathrm{E} \\
\neg\left(\mathrm{UV}^{*}\right) & \equiv_{\mathrm{FOL}} & \exists x(A x \wedge B x) & = & \mathrm{I}
\end{array}
$$

- first-order logic (FOL) has no existential import
- the categorical statements induce the partition $\Pi_{C A T}^{\mathrm{FOL}}$:
- $\beta_{1}:=\exists x A x \wedge \forall x(A x \rightarrow B x)$
- $\beta_{2}:=\exists x(A x \wedge B x) \wedge \exists x(A x \wedge \neg B x)$
- $\beta_{3}:=\exists x A x \wedge \forall x(A x \rightarrow \neg B x)$
- $\beta_{4}:=\neg \exists x A x$
- in FOL, the categorical statements constitute a degenerate square

Definite descriptions and categorical statements

- there is a subalternation from [the $x: A x] B x$ to the A -statement
- there is a subalternation from [the $x: A x] B x$ to the I-statement
- and so on...
- summary:
the interaction between the definite description formulas and the categorical statements gives rise to a Buridan octagon

- the definite descriptions induce the 3-partition $\Pi_{T D D}^{\mathrm{FOL}}$
- the categorical statements induce the 4-partition $\Pi_{C A T}^{\mathrm{FOL}}$
\Rightarrow together, they induce the 6-partition $\Pi_{O C T A}^{\mathrm{FOL}}=\Pi_{T D D}^{\mathrm{FOL}} \wedge_{\mathrm{FOL}} \Pi_{C A T}^{\mathrm{FOL}}$
- $\gamma_{1}:=\exists x \exists y(A x \wedge A y \wedge x \neq y) \wedge \forall x(A x \rightarrow B x)$
- $\gamma_{2}:=\exists x(A x \wedge B x) \wedge \exists x(A x \wedge \neg B x)$
- $\gamma_{3}:=\exists x \exists y(A x \wedge A y \wedge x \neq y) \wedge \forall x(A x \rightarrow \neg B x)$
- $\gamma_{4}:=[$ the $x: A x] B x$
- $\gamma_{5}:=[$ the $x: A x] \neg B x$
- $\gamma_{6}:=\neg \exists x A x$
- $\Pi_{O C T A}^{\mathrm{FOL}}$ is a refinement of $\Pi_{T D D}^{\mathrm{FOL}}$

$$
\Rightarrow \gamma_{4}=\alpha_{1} \text { and } \gamma_{5}=\alpha_{2} \text {, while } \gamma_{1} \vee \gamma_{2} \vee \gamma_{3} \vee \gamma_{6} \equiv_{\text {FOL }} \alpha_{3}
$$

- $\Pi_{O C T A}^{\mathrm{FOL}}$ is a refinement of $\Pi_{C A T}^{\mathrm{FOL}}$

$$
\Rightarrow \gamma_{2}=\beta_{2} \text { and } \gamma_{6}=\beta_{4} \text {, while } \gamma_{1} \vee \gamma_{4} \equiv_{\text {FOL }} \beta_{1} \text { and } \gamma_{3} \vee \gamma_{5} \equiv_{\text {FOL }} \beta_{3}
$$

- $\Pi_{O C T A}^{\mathrm{FOL}}$ allows us to encode every formula of the Buridan octagon

- $\Pi_{O C T A}^{\mathrm{FOL}}$ is ordered along two semi-independent dimensions
- the cardinality of (the extension of) A
- the proportion of $A \mathrm{~s}$ that are B
- semi-independent: higher cardinalities allow for more fine-grained proportionality distinctions
- ongoing work on linguistic aspects:
- plausible partitioning process?
- split the ' ≥ 2 '-region into ' ≥ 3 '- and ' $=2$ '-subregions ('both', 'neither')

－recent work on existential import in syllogistics （Seuren，Chatti and Schang，Read）
－for every categorical statement φ ，define
－variant $\varphi_{\text {imp！}}$ that explicitly has existential import
－variant $\varphi_{\text {imp？}}$ that explicitly lacks existential import
$\exists x A x \wedge \varphi$
$\exists x A x \rightarrow \varphi$

$\mathrm{A}_{\text {imp }}$ ？	三FOL	$\forall x(A x \rightarrow B x)$	三 ${ }_{\text {FOL }}$	（UV）
$\mathrm{I}_{\text {imp！}}$	三FOL	$\exists x(A x \wedge B x)$	三FOL	$\neg\left(\mathrm{UV}^{*}\right)$
Eimp？	三FOL	$\forall x(A x \rightarrow \neg B x)$	三FOL	（UV＊）
Oimp！	\equiv FOL	$\exists x(A x \wedge \neg B x)$	＝ FOL	\neg（UV）
$A_{\text {imp！}}$	三FOL	$\exists x A x \wedge \forall x(A x \rightarrow B x)$	三FOL	$(E X) \wedge(U V)$
$\mathrm{l}_{\text {imp }}$ ？	三FOL	$\exists x A x \rightarrow \exists x(A x \wedge B x)$	三FOL	$\neg(\mathrm{EX}) \vee \neg\left(\mathrm{UV}{ }^{*}\right)$
Eimp！	三fol	$\exists x A x \wedge \forall x(A x \rightarrow \neg B x)$	三 ${ }_{\text {FOL }}$	$(\mathrm{EX}) \wedge\left(\mathrm{UV}^{*}\right)$
Oimp？	$\equiv \mathrm{FOL}$	$\exists x A x \rightarrow \exists x(A x \wedge \neg B x)$	$\equiv{ }_{\text {FOL }}$	$\neg(\mathrm{EX}) \vee \neg(\mathrm{UV})$

A related octagon

- Chatti and Schang's 8 formulas are closely related to our 8 formulas
- Chatti and Schang's 8 formulas also constitute a Buridan octagon
- bitstring analysis: partition $\left\{\mathrm{A}_{\text {imp! }}, \mathrm{I}_{\text {imp! }} \wedge \mathrm{O}_{\text {imp! }}, \mathrm{E}_{\text {imp! }}, \neg \exists x A x\right\}=\Pi_{C A T}^{\mathrm{FOL}}$

- Buridan octagon for definite description formulas and categorical statements
- induces the partition $\Pi_{O C T A}^{\mathrm{FOL}}$, with 6 anchor formulas
- $[$ the $x: A x] B x \not \equiv \mathrm{FOL} \mathrm{A} \wedge \mathrm{I} \quad(000100 \neq 100101 \wedge 110100)$
- $\neg[$ the $x: A x] \neg B x \not \equiv \mathrm{FOL} \mathrm{A} \vee \mathrm{I} \quad(111101 \neq 100101 \vee 110100)$
- Buridan octagon for categorical statements that explicitly have/lack existential import
- induces the partition $\Pi_{C A T}^{\mathrm{FOL}}$, with 4 anchor formulas
- $A_{\text {imp! }} \equiv_{\text {FoL }} A_{\text {imp }} \wedge I_{\text {imp! }}$
$(1000=1001 \wedge 1100)$

$$
(1101=1001 \wedge 1100)
$$

- summary:
- one and the same Aristotelian family (Buridan octagons)
- different Boolean subtypes
- until now: only worked in ordinary first-order logic (FOL)
- Chatti and Schang: deal with existential import by adding $(\neg) \exists x A x$ as conjunct/disjunct to the categorical statements
- alternative approach:
- existential import \neq property of individual formulas
- existential import $=$ property of underlying logical system
- introduce new logical system SYL:
- $\mathrm{SYL}=\mathrm{FOL}+\exists x A x$
- interpreted on FOL-models $\langle D, I\rangle$ such that $I(A) \neq \emptyset$
- analogy with modal logic:
- $K D=K+\Delta \top$
- interpreted on serial frames, i.e. K-frames $\langle W, R\rangle$ such that $R[w] \neq \emptyset$ (for all $w \in W$)
- move from FOL to SYL
- influence on the categorical statements:
- e.g. A and E are unconnected in FOL, but become contrary in SYL, etc.
- degenerate square turns into classical square
- no influence on the definite description formulas:
- e.g. [the $x: A x] B x$ and [the $x: A x] \neg B x$ are contrary in FOL, and remain so in SYL
- classical square remains classical square
- no influence on the interaction between definite descriptions and categorical statements:
- e.g. subalternation from [the $x: A x] B x$ to A and I in FOL, and this remains so in SYL
- from Buridan octagon to Lenzen octagon

- which partition $\Pi_{O C T A}^{S Y L}$ is induced?
- SYL is a stronger logical system than FOL
- consider $\neg \exists x A x=\gamma_{6} \in \Pi_{\text {OCTA }}^{S Y L}$: FOL-consistent, but SYL-inconsistent
- $\Pi_{O C T A}^{S Y L}=\Pi_{O C T A}^{\text {FOL }}-\left\{\gamma_{6}\right\}$
- deleting the sixth bit position \Rightarrow unified perspective on all changes:
- A (100101) and E (001011) change from unconnected to contrary
- I (110100) and O (011010) change from unconnected to subcontrary
- A (100101) and I (110100) change from unconnected to subaltern
- [the $x: A x] B x(000100)$ and [the $x: A x] B x(000010)$ are contrary and remain so
- [the $x: A x] B x$ (000100) and $\mathrm{A}(100101)$ are subaltern and remain so
- (EX) and (UN) play complementary roles in Russell's theory
- introduce new logical system SYL*
- $\mathrm{SYL}^{*}=\mathrm{FOL}+\forall x \forall y((A x \wedge A y) \rightarrow x=y)$
- interpreted on FOL-models $\langle D, I\rangle$ such that $|I(A)| \leq 1$
- move from FOL to SYL*
- no influence on the definite description formulas
- e.g. [the $x: A x] B x$ and [the $x: A x] \neg B x$ are contrary in FOL, and remain so in SYL
- classical square remains classical square
- influence on the categorical statements:
- e.g. A and E are unconnected in FOL, but become subcontrary in SYL
- degenerate square turns into classical square
- note: this square is 'flipped upside down'!

- example: take A to be the predicate 'monarch of country C '
- then always $|I(A)| \leq 1$
- if C is a monarchy, then $|I(A)|=1$
- if C is a republic, then $|I(A)|=0$
- move from FOL to SYL*
- influence on the interaction between definite descriptions and categorical statements
- e.g. [the $x: A x] B x$ and the E-statement go from FOL-contrary to SYL*-contradictory
- e.g. in FOL there is a subalternation from [the $x: A x] B x$ to the I-statement, but in SYL* they are logically equivalent to each other
- pairwise collapse of def. descr. formulas and categorical statements:

$$
\begin{array}{rlll}
{[\text { the } x: A x] B x} & \equiv \mathrm{SYL}^{*} & \mathrm{I} & =\exists x(A x \wedge B x) \\
\neg[\text { the } x: A x] B x & \equiv_{\mathrm{SYL}^{*}} & \mathrm{E} & =\forall x(A x \rightarrow \neg B x) \\
{[\text { the } x: A x] \neg B x} & \equiv_{\mathrm{SYL}^{*}} & \mathrm{O} & =\exists x(A x \wedge \neg B x) \\
\neg[\text { the } x: A x] \neg B x & \equiv \mathrm{SYL}^{*} & \mathrm{~A} & =\forall x(A x \rightarrow B x)
\end{array}
$$

- from Buridan octagon to collapsed (flipped) classical square

- elementary calculation yields the partition $\Pi_{\text {COLL }}^{\text {SYL }}$ $=\{\exists x A x \wedge \forall x(A x \rightarrow B x), \exists x A x \wedge \forall x(A x \rightarrow \neg B x), \neg \exists x A x\}$
- $\Pi_{\text {COLL }}^{\mathrm{SYL}}=\Pi_{O C T A}^{\mathrm{FOL}}-\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$
- SYL* is a stronger logical system than FOL
- $\gamma_{1}, \gamma_{2}, \gamma_{3}$ are FOL-consistent, but SYL*-inconsistent
- $\Pi_{C O L L}^{S Y L}=\Pi_{T D D}^{\mathrm{FOL}}$
- $\Pi_{T D D}^{\mathrm{FOL}}$ is the partition for the def. descr. square in FOL
- moving from FOL to SYL* did not change this square
- but did cause it to coincide with the categorical statement square
- $\Pi_{\text {COLL }}^{\mathrm{SYL}}=\Pi_{\text {CAT }}^{\mathrm{FOL}}-\left\{\beta_{2}\right\}$
- $\Pi_{C A T}^{\mathrm{FOL}}$ is the partition for the cat. statement square in FOL
- SYL* is a stronger than FOL; β_{2} is FOL-consistent, but SYL*-inconsistent
- moving from FOL to SYL* triggered change from degen. square to (flipped) classical square, which coincides with the def. descr. square

Summary of the case study

- Aristotelian diagrams for Russell's theory of definite descriptions
- classical square, JSB hexagon, Buridan octagon...
- the formula $\neg[$ the $x: A x] \neg B x$ and its interpretation, negations of [the $x: A x] B x$ relative to different subuniverses...
- phenomena and techniques studied in logical geometry
- bitstring analysis, Boolean closure...
- Boolean subtypes, logic-sensitivity...

1．Basic Concepts and Bitstring Semantics
2．Abstract－Logical Properties of Aristotelian Diagrams，Part I榢 Aristotelian，Opposition，Implication and Duality Relations

3．Visual－Geometric Properties of Aristotelian Diagrams噌 Informational Equivalence，Symmetry and Distance

4．Abstract－Logical Properties of Aristotelian Diagrams，Part II恽 Boolean Structure and Logic－Sensitivity

5．Case Studies and Philosophical Outlook

- recall the guiding metaphor:
- Aristotelian diagrams constitute a language
- logical geometry is the linguistics that studies that language
- double motivation for logical geometry:
- Aristotelian diagrams as objects of independent interest
- Aristotelian diagrams as a widely-used language
- fundamental question:
- why are Aristotelian diagrams used so widely to begin with?
- which reasons do the authors themselves offer for their usage?
(practice-based philosophy of logic)

Four possible explanations

(1) the received view: Aristotelian diagrams as pedagogical devices
(2) the multimodal nature of Aristotelian diagrams
(3) the implicit normativity of the tradition of using Aristotelian diagrams
(9) Aristotelian diagrams as heuristic tools

- these explanations are not mutually exclusive
- Aristotelian diagrams as technologies or instruments
- a technology can be created with one function in mind
- and later acquire another function
- the latter can even become the primary function
- Aristotelian diagrams are mainly pedagogical devices
- visual nature \Rightarrow mnemonic value
- helpful to introduce novice students to the abstract discipline of logic
- Kruja et al., History of Graph Drawing, 2002:
"Squares of opposition were pedagogical tools used in the teaching of logic ... They were designed to facilitate the recall of knowledge that students already had"
- Nicole Oresme, Le livre du ciel et du monde, 1377:
"In order to illustrate this, I clarify it by means of a figure very similar to that used to introduce children to logic."
(Et pour ce mieux entendre, je le desclaire en une figure presque semblable a une que I'en fait pour la premiere introduction des enfans en logique.)

Scholastic and contemporary textbooks

LIBRI SECVNDI TRACTATVS

Nechocrilentiop̄rere. undü:ppoititiones $\mathrm{ci}_{\text {I }}$ oppofiras certis coffrn

 fimusinifí materix ppofitionū̃ írelligam?
Demareriapro pofitionür Ca。
fextü. DIS: atería ppooficio MAE quid efff
 fitionis pro materiali. Inhac. i.dhac maveria. diciurelfe propofitio Formalis materia : eft

 síal.homo eft nifibilis. Cōtingentem vero: ©ī̃disanīporeft adefte of maliacon

Delegibus propofitionũ.Ca.feptimū DIS
Jexcōtra,
 effe vere aut falice de marerianarurdi iv Premota :dc materia aitit

 Icx fubal, homonō eff albus. DIS Queffilex Subalicmaps? MAG ligceft ternarum Siuniucrẩévern/pticulfis eff vera: \&\& noneconuerfo. S'fig icularis ε lescontra fallzvlis eff falla: Z non coonuerfo. DIS. LexContradrtoriaryeqi is ditoriagy oft MAG ralis. Si unatfivera relfig erit falf: 8

Introduction to Logical Geometry - Part 5

KU LEUVEN

Student notes (Ludovicus Bertram, Leuven, ca. 1781)

Problem

- the received view was accurate in the past:

Aristotelian diagrams indeed were primarily/exclusively teaching tools

- but today, Aristotelian diagrams occur
- not only in textbooks on logic
- but mainly in research-level papers/monographs on various disciplines (logic, linguistics, psychology, computer science, etc.)
- Aristotelian diagrams offer cognitive advantages, because of their multimodal nature (visual + symbolic/textual)
- Aristotelian diagrams as a visual summary of some of the key properties of the logical system under investigation
- analogy: graph vs. raw numeric data
- comparison with the received view:
- both emphasize the cognitive advantages of Aristotelian diagrams
- the second view accommodates teaching and research contexts

- Béziau, 2013:
"The use of such a coloured diagram is very useful to understand in a direct, quick and synthetic way basic notions of modern logic, corresponding to the notion of Übersichtlichkeit [surveyability] that Wittgenstein was fond of"
- Ciucci, Dubois \& Prade, 2015:
"Opposition structures are a powerful tool to express all properties of rough sets and fuzzy rough sets w.r.t. negation in a synthetic way."
- Eilenberg \& Steenrod, 1952 (commutative diagrams in alg. topology): "The diagrams incorporate a large amount of information. Their use provides extensive savings in space and in mental effort."
- the second view fits well with visually 'simple' diagrams such as the square of opposition
- but what about more visually complex diagrams?

(e)
(f)

Introduction to Logical Geometry - Part 5

- Aristotelian diagrams have a very rich and respectable tradition within the broader history of logic: many famous authors made use of these diagrams
- the tradition of using Aristotelian diagrams gets endowed with a kind of (implicit) normativity (tradition itself as object of reverence)
- Banerjee et al., 2018:
"many artificial intelligence knowledge representation settings are sharing the same structures of opposition that extend or generalise the traditional square of opposition which dates back to Aristotle"
- Ciucci, 2016:
"The study of oppositions starts in ancient Greece and has its main result in the Square of Opposition by Aristotle. In the last years, we can assist to a renewal of interest in this topic."
- this provides a (partial) explanation as to why we continue to use Aristotelian diagrams
- it takes the tradition of using Aristotelian diagrams as its starting point
- but how/why did this tradition start in the first place?

Aristotelian diagrams as heuristic tools

- Aristotelian diagrams as heuristic tools
- they enable researchers
- to draw high-level analogies between seemingly unrelated frameworks
- to introduce new concepts (by transferring them across frameworks)
- Aristotelian relations $=$ 'right' layer of abstraction
- not overly specific (otherwise, no analogies are possible)
- not overly general (otherwise, the analogies become vacuous)

Examples: drawing analogies

- Ciucci et al., 2014:

The Structure of Oppositions in Rough Set Theory and Formal Concept Analysis - Toward a New Bridge between the Two Settings

- Dubois et al., 2015:

The Cube of Opposition - A Structure underlying many Knowledge Representation Formalisms

- Read, 2012:
"Buridan was able [...] to exhibit a strong analogy between modal, oblique and nonnormal propositions in his three octagons"

Examples: introducing new concepts

- think back of $\neg[$ the $x: A x] \neg B x$ from the case study
- Yao, 2013:
"With respect to the four logic expressions of the square of opposition, we can identify four subsets of attributes. [...] While the set of core attributes is well studied, the other [three] sets of attributes received much less attention."

Introduction to Logical Geometry - Part 5

Strategy for the future

typology

- discover systematic regularities in logical behavior
- extrapolate new diagrams and predict their behavior

Introduction to Logical Geometry - Part 5

typology

- discover systematic regularities in logical behavior
- extrapolate new diagrams and predict their behavior

database

- help to avoid idle armchair theorizing
- discover new types of logical behavior

typology

- discover systematic regularities in logical behavior
- extrapolate new diagrams and predict their behavior

database

- help to avoid idle armchair theorizing
- discover new types of logical behavior interplay
- Aristotelian diagrams as heuristic devices
- unexpected analogies
- introducing new concepts

Strategy for the future

- Aristotelian diagrams as objects of independent interest
- Aristotelian diagrams as a widely-used language

Introduction to Logical Geometry - Part 5

Thank you! Questions?

More info: www.logicalgeometry.org

