KULEUVEN

Aristotelian and Duality Relations with Proportional Quantifiers

Hans Smessaert
Fifth World Congress on the
Square of Oppositions
Easter Island, November 2016

Introduction

- The central aim of the presentation is to chart which logical relations hold between quantificational formulas expressing the notion of proportionality.
- Two families of logical relations:
- Aristotelian relations of contradiction, (sub)contrariety and subalternation
- Duality relations of external, internal and dual negation
- Two types of expressions:
- explicit proportionals: the proportion is explicitly referred to in terms of fractions or percentages:
- At least two thirds of the students passed the test.
- Less than 20 percent of the students passed the test.
- implicit proportionals: the actual proportion remains implicit:
- A/the minority/majority of the students passed the test.

Structure of the talk

(1) Introduction
(2) Aristotelian and Duality Relations
(3) Classical versus degenerate Aristotelian and Duality Squares
(4) Aristotelian and Duality Squares for Proportional Quantifiers
(5) Conclusion

This talk is based on joint work with Lorenz Demey.

Structure of the talk

(1) Introduction

(2) Aristotelian and Duality Relations
(3) Classical versus degenerate Aristotelian and Duality Squares
(4) Aristotelian and Duality Squares for Proportional Quantifiers
(5) Conclusion

Aristotelian \& Duality Relations with Proportional Qs - H. Smessaert

Two propositions are:
contradictory (CD) iff they cannot be true together and they cannot be false together,
contrary (C) iff they cannot be true together but they can be false together,
subcontrary (SC) iff they can be true together but they cannot be false together,
in subalternation (SA) iff the first proposition entails the second but the second doesn't entail the first

The set of Aristotelian relations is fundamentally hybrid:

- CD, C and SC are symmetric; definition ~being true/false together SA is not symmetric; definition \sim truth propagation.
- CD is a functional relation, but C, SC and SA are not.
- Smessaert \& Demey (2014)

Any fragment of 4 formulas from a logical language \mathcal{L} for a logical system S which is closed under negation (i.e. which consists of two pairs of contradictories) yields an Aristotelian square which is

$$
\begin{aligned}
\text { classical } & \equiv(2 \times \mathrm{CD})+(2 \times \mathrm{SA})+(1 \times \mathrm{C})+(1 \times \mathrm{SC}) \\
\text { degenerate } & \equiv(2 \times \mathrm{CD})
\end{aligned}
$$

classical Aristotelian square

degenerate Aristotelian square

Duality relations

The n-ary connectives/operators O_{1} and O_{2} are one another's:
external negation (EN) iff for all $\varphi_{1}, \ldots, \varphi_{n}$

$$
O_{2}\left(\varphi_{1}, \ldots, \varphi_{n}\right) \equiv \neg O_{1}\left(\varphi_{1}, \ldots, \varphi_{n}\right)
$$

internal negation (IN) iff for all $\varphi_{1}, \ldots, \varphi_{n}$

$$
O_{2}\left(\varphi_{1}, \ldots, \varphi_{n}\right) \equiv O_{1}\left(\neg \varphi_{1}, \ldots, \neg \varphi_{n}\right)
$$

dual negation (DN) iff for all $\varphi_{1}, \ldots, \varphi_{n}$

$$
O_{2}\left(\varphi_{1}, \ldots, \varphi_{n}\right) \equiv \neg O_{1}\left(\neg \varphi_{1}, \ldots, \neg \varphi_{n}\right)
$$

Transpose definitions of EN/IN/DN from operators to formulas: if operators O_{1} and O_{2} are each other's EN/IN/DN, then formulas $O_{1}\left(\varphi_{1} \ldots \varphi_{n}\right)$ and $O_{2}\left(\varphi_{1} \ldots \varphi_{n}\right)$ are said to be each other's EN/IN/DN as well.

The set of duality relations is fundamentally uniform:

- EN, IN and DN are all symmetric relations.
- EN, IN and DN are all functional relations.

Duality squares

Any fragment of 4 formulas from a logical language \mathcal{L} for a logical system S which is closed under negation (i.e. which consists of two pairs of contradictories) yields a duality square which is

$$
\begin{aligned}
\text { classical } & \equiv(2 \times \mathrm{EN})+(2 \times \mathrm{IN})+(2 \times \mathrm{DN}) \\
\text { degenerate } & \equiv(2 \times \mathrm{EN})
\end{aligned}
$$

classical duality square

degenerate duality square

Conceptual independence of Aristotelian and Duality relations 9

- Löbner (1990,2011), Peters \& Westerståhl (2006), Westerståhl (2012), Demey (2012), Smessaert (2012).
- All duality relations are symmetric but not all Aristotelian relations are.
- All duality relations are functional but not all Aristotelian relations are.
- The duality relation IN corresponds to Aristotelian C and/or SC.
- Aristotelian relations are highly logic-sensitive, whereas duality relations are insensitive to underlying logic: Demey (2015), Demey \& Smessaert (2016).

classical Aristotelian square

classical duality square

Duality relations: group theoretic analysis of duality square

The functions ID, ENEG, INEG and DUAL jointly form a group that is isomorphic to the Klein four group \mathbf{V}_{4}. Its Cayley table looks as follows:

\circ	ID	ENEG	INEG	DUAL
ID	ID	ENEG	INEG	DUAL
ENEG	ENEG	ID	DUAL	INEG
INEG	INEG	DUAL	ID	ENEG
DUAL	DUAL	INEG	ENEG	ID

Duality relations: group theoretic analysis of duality square

The functions ID, ENEG, INEG and DUAL jointly form a group that is isomorphic to the Klein four group \mathbf{V}_{4}. Its Cayley table looks as follows:

\circ	ID	ENEG	INEG	DUAL
ID	ID	ENEG	INEG	DUAL
ENEG	ENEG	ID	DUAL	INEG
INEG	INEG	DUAL	ID	ENEG
DUAL	DUAL	INEG	ENEG	ID

\mathbf{V}_{4} is isomorphic to the direct product of \mathbb{Z}_{2} with itself, i.e. $\mathbf{V}_{4} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. The Cayley table for $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ looks as follows:

\circ	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$(0,0)$	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$(1,0)$	$(1,0)$	$(0,0)$	$(1,1)$	$(0,1)$
$(0,1)$	$(0,1)$	$(1,1)$	$(0,0)$	$(1,0)$
$(1,1)$	$(1,1)$	$(0,1)$	$(1,0)$	$(0,0)$

Duality relations: from duality square to duality cube

generalisation to multiple/combined operators

- from 2 negation positions to 3 negation positions
- ENEG OPERATOR1 MNEG OPERATOR2 INEG
- from $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ to $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$

Generalized Post-duality

- from 2 negation positions to 3 negation positions
- ENEG OPERATOR INEG1 INEG2
- from $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ to $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$

propositional connectives

Keynes-Johnson octagon
(3) Classical versus degenerate Aristotelian and Duality Squares

classical Aristotelian square

classical duality square

quantifiers of standard First Order Logic

The numerical quantifiers

categorical statements in
standard First Order Logic (no EI)

Type 4 square: degenerate Aristotelian + degenerate Dual 17

Type 4x square: degenerate Aristotelian + degenerate Dual 18

degenerate Aristotelian square

Scales and Bitstrings for Numerical and Standard Quantifiers 20

$\begin{aligned} & 100 \\ & 010 \\ & 001 \end{aligned}$	all some but not all no	011 not all 101 no or all 110 some
	$\xlongequal[1 / 0]{ }\left\|\begin{array}{c} 5 \\ 1 / 0 \end{array}\right\|$	$1 / 0$
$\begin{aligned} & 100 \\ & 010 \\ & 001 \end{aligned}$	more than 5 011 exactly 5 101 less than 5 110	at most 5 not exactly 5 at least 5

10000	more than $3 / 4$	01111	at most $3 / 4$
01000	exactly $3 / 4$	10111	not exactly $3 / 4$
00100	less t. $3 / 4$ but more t. $1 / 4$	11011	
00010	exactly $1 / 4$	at least $3 / 4$ or at most $1 / 4$	
00001	less than $1 / 4$	11101	not exactly $1 / 4$
	11110	at least $1 / 4$	

11000	more than $3 / 4$ or exactly $3 / 4$	\equiv	at least $3 / 4$
00011	less than $1 / 4$ or exactly $1 / 4$	\equiv	at most $1 / 4$
01110	at most $3 / 4$ but at least $1 / 4$	\equiv	between $1 / 4$ and $3 / 4$

classical Aristotelian square

classical duality square

10000 More than 3/4 of the students passed the test.
\equiv Less than $1 / 4$ of the students failed the test.
00001 Less than $1 / 4$ of the students passed the test.
\equiv More than 3/4 of the students failed the test.
$11110 \quad$ At least $1 / 4$ of the students passed the test.
\equiv At most $3 / 4$ of the students failed the test.
01111 At most 3/4 of the students passed the test.
\equiv At least $1 / 4$ of the students failed the test.

classical Aristotelian square

classical duality square

01000 Exactly 3/4 of the students passed the test.
\equiv Exactly $1 / 4$ of the students failed the test.
00010 Exactly $1 / 4$ of the students passed the test.
\equiv Exactly 3/4 of the students failed the test.
11101 More or less than $1 / 4$ of the students passed the test.
\equiv More or less than $3 / 4$ of the students failed the test.
10111 More or less than 3/4 of the students passed the test.
\equiv More or less than $1 / 4$ of the students failed the test.

classical Aristotelian square

degenerate duality square

10000 More than 3/4 of the students passed the test.
00111 Less than 3/4 of the students passed the test.
11000 At least 3/4 of the students passed the test.
01111 At most 3/4 of the students passed the test.
single collapse with self-internal negation

10000		More than 3/4 of the students passed the test.
00100		Less than 3/4 but more than 1/4 of t.s. passed the test.
	\equiv	Less than 3/4 but more than 1/4 of t.s. failed the test.
11011		At least $3 / 4$ or at most $1 / 4$ of the students passed the test.
	\equiv	At least 3/4 or at most 1/4 of the students failed the test.
01111		At most 3/4 of the students passed the test.

double collapse with self-internal negation

10001 More than $3 / 4$ or less than $1 / 4$ of t.s. passed the test.
\equiv More than $3 / 4$ or less than $1 / 4$ of t.s. failed the test.
00100 Less than $3 / 4$ but more than $1 / 4$ of t.s. passed the test.
\equiv Less than $3 / 4$ but more than $1 / 4$ of t.s. failed the test.
11011 At least $3 / 4$ or at most $1 / 4$ passed.
\equiv At least $3 / 4$ or at most $1 / 4$ failed.
01110 At most 3/4 but at least $1 / 4$ of t.s. passed.
\equiv At most $3 / 4$ but at least $1 / 4$ of t.s. failed.
Aristotelian \& Duality Relations with Proportional Qs - H. Smessaert

degenerate Aristotelian square
classical duality square

11010
At least $3 / 4$ or exactly $1 / 4$ of t.s. passed the test.
\equiv At most $1 / 4$ or exactly $3 / 4$ of t.s. failed the test.
01011 At most $1 / 4$ or exactly $3 / 4$ of t.s. passed the test.
\equiv At least $3 / 4$ or exactly $1 / 4$ of t.s. failed the test.
10100 More than $3 / 4$ or more than $1 / 4$ but less than $3 / 4$ passed.
\equiv Less than $1 / 4$ or more than $1 / 4$ but less than $3 / 4$ failed.
Less than $1 / 4$ or more than $1 / 4$ but less than $3 / 4$ passed.
$\begin{aligned} & \equiv \text { Less than } 1 / 4 \text { or more than } 1 / 4 \text { but less than } 3 / 4 \text { failed. } \\ & \quad \text { Less than } 1 / 4 \text { or more than } 1 / 4 \text { but less than } 3 / 4 \text { passed. }\end{aligned}$
00101
-
\equiv More than $3 / 4$ or more than $1 / 4$ but less than $3 / 4$ failed.

11000 At least 3/4 of the students passed the test.
10011 More than $3 / 4$ or at most $1 / 4$ of the students passed the test.
01100 At most 3/4 but more than 1/4 of the students passed the test.
00111 Less than 3/4 of the students passed the test.

Implicit Proportional Quantifiers

- A/the majority of the students passed the test.
- A/the minority of the students passed the test.
- Less than a/the majority of the students passed the test.
- More than a/the minority of the students passed the test.
- At least a/the majority passed the test. => ?probably all students
- At most a/the minority passed the test. => ?probably no students
- *Exactly a/the majority of the students passed the test.
- *Exactly a/the minority of the students passed the test.
- ??More than a/the majority passed the test. => ??all students
- ??Less than a/the minority passed the test. => ??no students
- ?At most a/the majority passed the test. $=>$??not all students
- ?At least a/the minority passed the test. => ??some students

100	a majority	011	not a majority / less than a majority
010	not a majority	101	a majority or a minority
001	bot a minority a minority	110	not a minority / more than a minority

classical Aristotelian square

classical duality square

100 A majority of the students passed the test. \equiv A minority of the students failed the test.
001 A minority of the students passed the test.
\equiv A majority of the students failed the test.
110 More than a minority of the students passed the test.
\equiv Less than a majority of the students failed the test.
011 Less than a majority of the students passed the test.
\equiv More than a minority of the students failed the test.

Structure of the talk

(1) Introduction

(2) Aristotelian and Duality Relations
(3) Classical versus degenerate Aristotelian and Duality Squares
(4) Aristotelian and Duality Squares for Proportional Quantifiers
(5) Conclusion

Aristotelian \& Duality Relations with Proportional Qs - H. Smessaert

- Chart the logical relations between quantificational formulas expressing the notion of proportionality.
- Two families of logical squares:
- Aristotelian squares: two subtypes: classical vs degenerate
- Duality squares: more subtypes
- two basic subtypes: classical vs degenerate
- collapsed duality squares with self-internal and self-dual negation
- singly collapsed versus doubly collapsed duality squares
- Two types of expressions:
- explicit proportionals:
- More than/exactly/less than 3/4 of the students passed the test.
- bitstrings of length five
- implicit proportionals:
- A/the minority/majority of the students passed the test.
- bitstrings of length three

Thank you!

More info: www.logicalgeometry.org

- Demey (2012). Algebraic Aspects of Duality Diagrams. Diagrams 2012.
- Demey (2015). Interactively Illustrating the Context-Sensitivity of Aristotelian Diagrams.
- Demey \& Smessaert (2016). Metalogical Decorations of Logical Diagrams. Logica Universalis.
- Demey \& Smessaert (2016) Duality in Logic and Language. To appear in J.-Y. Béziau (ed.) Encyclopaedia of Logic. College Publications.
- Löbner (1990). Wahr neben Falsch.
- Löbner (2011). Dual oppositions in lexical meaning. In Maienborn, C., von Heusinger, K., and Portner, P. (eds.) Semantics: An International Handbook of Natural Language Meaning.
- Peters \& Westerståhl (2006). Quantifiers in Language and Logic.

References

- Smessaert (2012). The Classical Aristotelian Hexagon versus the Modern Duality Hexagon. Logica Universalis.
- Smessaert \& Demey (2014). Logical Geometries and Information in the Square of Oppositions. Journal of Logic, Language and Information.
- Westerståhl (2012). Classical vs. modern squares of opposition, and beyond.

