

Aristotelian and Duality Relations with Proportional Quantifiers

Hans Smessaert

Fifth World Congress on the Square of Oppositions

Easter Island, November 2016

- The central aim of the presentation is to chart which logical relations hold between quantificational formulas expressing the notion of *proportionality*.
- Two families of logical relations:
 - Aristotelian relations of contradiction, (sub)contrariety and subalternation
 - Duality relations of external, internal and dual negation
- Two types of expressions:
 - explicit proportionals: the proportion is explicitly referred to in terms of fractions or percentages:
 - At least two thirds of the students passed the test.
 - Less than 20 percent of the students passed the test.
 - implicit proportionals: the actual proportion remains implicit:
 - ► A/the minority/majority of the students passed the test.

KU LEUV

- 2 Aristotelian and Duality Relations
- Classical versus degenerate Aristotelian and Duality Squares
- Aristotelian and Duality Squares for Proportional Quantifiers
- 5 Conclusion

This talk is based on joint work with Lorenz Demey.

Aristotelian & Duality Relations with Proportional Qs - H. Smessaert

- 2 Aristotelian and Duality Relations
 - 3) Classical versus degenerate Aristotelian and Duality Squares
 - 4 Aristotelian and Duality Squares for Proportional Quantifiers
 - 5 Conclusion

Aristotelian & Duality Relations with Proportional Qs - H. Smessaert

Two propositions are:

- contradictory (CD)
 - contrary (C)
 - subcontrary (SC)
- in subalternation (SA)
- iff they cannot be true together and they cannot be false together,
 iff they cannot be true together but they can be false together,
 iff they can be true together but they cannot be false together,
 iff the first proposition entails the second but the second doesn't entail the first

The set of Aristotelian relations is fundamentally hybrid:

- \bullet CD, C and SC are symmetric; definition \sim being true/false together SA is not symmetric; definition \sim truth propagation.
- CD is a functional relation, but C, SC and SA are not.
- Smessaert & Demey (2014)

KU LEU

Aristotelian squares

Any fragment of 4 formulas from a logical language \mathcal{L} for a logical system S which is closed under negation (i.e. which consists of two pairs of contradictories) yields an *Aristotelian square* which is

classical \equiv (2 × CD) + (2 × SA) + (1 × C) + (1 × SC) degenerate \equiv (2 × CD)

classical Aristotelian square

degenerate Aristotelian square

KULEU

The *n*-ary connectives/operators O_1 and O_2 are one another's:

iff

external negation (EN) iff

internal negation (IN)

dual negation (DN) iff

for all
$$\varphi_1, \dots, \varphi_n$$

 $O_2(\varphi_1, \dots, \varphi_n) \equiv \neg O_1(\varphi_1, \dots, \varphi_n)$
for all $\varphi_1, \dots, \varphi_n$
 $O_2(\varphi_1, \dots, \varphi_n) \equiv O_1(\neg \varphi_1, \dots, \neg \varphi_n)$
for all $\varphi_1, \dots, \varphi_n$
 $O_2(\varphi_1, \dots, \varphi_n) \equiv \neg O_1(\neg \varphi_1, \dots, \neg \varphi_n)$

Transpose definitions of EN/IN/DN from *operators* to *formulas*: if operators O_1 and O_2 are each other's EN/IN/DN, then formulas $O_1(\varphi_1 \dots \varphi_n)$ and $O_2(\varphi_1 \dots \varphi_n)$ are said to be each other's EN/IN/DN as well.

The set of duality relations is fundamentally uniform:

- EN, IN and DN are all symmetric relations.
- EN, IN and DN are all functional relations.

KU LEUV

Duality squares

Any fragment of 4 formulas from a logical language \mathcal{L} for a logical system S which is closed under negation (i.e. which consists of two pairs of contradictories) yields a *duality square* which is

classical \equiv (2 × EN) + (2 × IN) + (2 × DN) degenerate \equiv (2 × EN)

Aristotelian & Duality Relations with Proportional Qs - H. Smessaert

KU LEUV

Conceptual independence of Aristotelian and Duality relations 9

- Löbner (1990,2011), Peters & Westerståhl (2006), Westerståhl (2012), Demey (2012), Smessaert (2012).
- All duality relations are symmetric but not all Aristotelian relations are.
- All duality relations are functional but not all Aristotelian relations are.
- The duality relation IN corresponds to Aristotelian C and/or SC.
- Aristotelian relations are highly logic-sensitive, whereas duality relations are insensitive to underlying logic: Demey (2015), Demey & Smessaert (2016).

KU LEL

Duality relations: group theoretic analysis of duality square 10

The functions ID, ENEG, INEG and DUAL jointly form a group that is isomorphic to the *Klein four group* V_4 . Its Cayley table looks as follows:

0	ID	ENEG	INEG	DUAL
ID	ID	ENEG	INEG	DUAL
ENEG	ENEG	ID	DUAL	INEG
INEG	INEG	DUAL	ID	ENEG
DUAL	DUAL	INEG	ENEG	ID

KU LEUVEN

Duality relations: group theoretic analysis of duality square 10

The functions ID, ENEG, INEG and DUAL jointly form a group that is isomorphic to the *Klein four group* V_4 . Its Cayley table looks as follows:

0	ID	ENEG	INEG	DUAL
ID	ID	ENEG	INEG	DUAL
ENEG	ENEG	ID	DUAL	INEG
INEG	INEG	DUAL	ID	ENEG
DUAL	DUAL	INEG	ENEG	ID

 \mathbf{V}_4 is isomorphic to the direct product of \mathbb{Z}_2 with itself, i.e. $\mathbf{V}_4 \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. The Cayley table for $\mathbb{Z}_2 \times \mathbb{Z}_2$ looks as follows:

KU LEUVE

Duality relations: from duality square to duality cube

generalisation to multiple/combined operators

- from 2 negation positions to 3 negation positions
- ENEG OPERATOR1 MNEG OPERATOR2 INEG
- from $\mathbb{Z}_2 imes \mathbb{Z}_2$ to $\mathbb{Z}_2 imes \mathbb{Z}_2 imes \mathbb{Z}_2$

Aristotelian & Duality Relations with Proportional Qs - H. Smessaert

KU LEUV

Generalized Post-duality

- from 2 negation positions to 3 negation positions
- ENEG OPERATOR INEG1 INEG2
- from $\mathbb{Z}_2 imes \mathbb{Z}_2$ to $\mathbb{Z}_2 imes \mathbb{Z}_2 imes \mathbb{Z}_2$

2 Aristotelian and Duality Relations

3 Classical versus degenerate Aristotelian and Duality Squares

4 Aristotelian and Duality Squares for Proportional Quantifiers

5 Conclusion

Aristotelian & Duality Relations with Proportional Qs - H. Smessaert

classical Aristotelian square

classical duality square

quantifiers of standard First Order Logic

Aristotelian & Duality Relations with Proportional Qs - H. Smessaert

Aristotelian & Duality Relations with Proportional Qs – H. Smessaert

classical duality square

categorical statements in standard First Order Logic (no EI)

Aristotelian & Duality Relations with Proportional Qs - H. Smessaert

16

Type 4 square: degenerate Aristotelian + degenerate Dual 17

degenerate Aristotelian square

degenerate duality square

KU LEUVEN

Type 4x square: degenerate Aristotelian + degenerate Dual 18

KU LEUVEN

- 2 Aristotelian and Duality Relations
 - 3 Classical versus degenerate Aristotelian and Duality Squares

Aristotelian and Duality Squares for Proportional Quantifiers

5 Conclusion

Aristotelian & Duality Relations with Proportional Qs - H. Smessaert

Aristotelian & Duality Relations with Proportional Qs - H. Smessaert

KU LEUV

10000		More than 3/4 of the students passed the test.
	≡	Less than 1/4 of the students failed the test.
00001		Less than 1/4 of the students passed the test.
	≡	More than 3/4 of the students failed the test.
11110		At least 1/4 of the students passed the test.
	≡	At most 3/4 of the students failed the test.
01111		At most 3/4 of the students passed the test.
	\equiv	At least 1/4 of the students failed the test.

Aristotelian & Duality Relations with Proportional Qs - H. Smessaert

01000		Exactly 3/4 of the students passed the test.
	\equiv	Exactly 1/4 of the students failed the test.
00010		Exactly 1/4 of the students passed the test.
	≡	Exactly 3/4 of the students failed the test.
11101		More or less than 1/4 of the students passed the test.
	≡	More or less than 3/4 of the students failed the test.
10111		More or less than 3/4 of the students passed the test.
	≡	More or less than 1/4 of the students failed the test.

Aristotelian & Duality Relations with Proportional Qs – H. Smessaert

10000	More than 3/4 of the students passed the test.
00111	Less than 3/4 of the students passed the test.
11000	At least 3/4 of the students passed the test.
01111	At most 3/4 of the students passed the test.

Aristotelian & Duality Relations with Proportional Qs - H. Smessaert

single collapse with self-internal negation

10000		More than 3/4 of the students passed the test.
00100		Less than 3/4 but more than 1/4 of t.s. passed the test.
	\equiv	Less than 3/4 but more than 1/4 of t.s. failed the test.
11011		At least 3/4 or at most 1/4 of the students passed the test.
	\equiv	At least 3/4 or at most 1/4 of the students failed the test.
01111		At most 3/4 of the students passed the test.
Aristotelian & Duality Relations with Proportional Qs – H. Smessaert		

26

double collapse with self-internal negation

10001		More than 3/4 or less than 1/4 of t.s. passed the test.
	\equiv	More than 3/4 or less than 1/4 of t.s. failed the test.
00100		Less than 3/4 but more than 1/4 of t.s. passed the test.
	\equiv	Less than 3/4 but more than 1/4 of t.s. failed the test.
11011		At least 3/4 or at most 1/4 passed.
	\equiv	At least 3/4 or at most 1/4 failed.
01110		At most 3/4 but at least 1/4 of t.s. passed.
	\equiv	At most 3/4 but at least 1/4 of t.s. failed.
	0 D	

Type 4 square: degenerate Aristotelian + degenerate Dual 28

11000 At least 3/4 of the students passed the test.
10011 More than 3/4 or at most 1/4 of the students passed the test.
01100 At most 3/4 but more than 1/4 of the students passed the test.
00111 Less than 3/4 of the students passed the test.

KU LEUV

- A/the majority of the students passed the test.
- A/the minority of the students passed the test.
- Less than a/the majority of the students passed the test.
- More than a/the minority of the students passed the test.
- At least a/the majority passed the test. => ?probably all students
- At most a/the minority passed the test. => ?probably no students
- *Exactly a/the majority of the students passed the test.
- *Exactly a/the minority of the students passed the test.
- ??More than a/the majority passed the test. => ??all students
- ??Less than a/the minority passed the test. => ??no students
- ?At most a/the majority passed the test. => ??not all students
- ?At least a/the minority passed the test. => ??some students

KU LEU

KU LEUVE

- 100 A majority of the students passed the test. \equiv A minority of the students failed the test.
- 001 A minority of the students passed the test.
 - \equiv A majority of the students failed the test.
- 110 More than a minority of the students passed the test.
 - \equiv Less than a majority of the students failed the test.
- 011 Less than a majority of the students passed the test.
 - \equiv More than a minority of the students failed the test.

Aristotelian & Duality Relations with Proportional Qs – H. Smessaert

- 2 Aristotelian and Duality Relations
 - 3 Classical versus degenerate Aristotelian and Duality Squares
 - 4 Aristotelian and Duality Squares for Proportional Quantifiers

Aristotelian & Duality Relations with Proportional Qs - H. Smessaert

Conclusion

- Chart the logical relations between quantificational formulas expressing the notion of *proportionality*.
- Two families of logical squares:
 - Aristotelian squares: two subtypes: classical vs degenerate
 - Duality squares: more subtypes
 - two basic subtypes: classical vs degenerate
 - collapsed duality squares with self-internal and self-dual negation
 - singly collapsed versus doubly collapsed duality squares
- Two types of expressions:
 - explicit proportionals:
 - More than/exactly/less than 3/4 of the students passed the test.
 - bitstrings of length five
 - implicit proportionals:
 - ► A/the minority/majority of the students passed the test.
 - bitstrings of length three

KU LEUV

Thank you!

More info: www.logicalgeometry.org

References

- Demey (2012). Algebraic Aspects of Duality Diagrams. *Diagrams 2012*.
- Demey (2015). Interactively Illustrating the Context-Sensitivity of Aristotelian Diagrams.
- Demey & Smessaert (2016). Metalogical Decorations of Logical Diagrams. *Logica Universalis*.
- Demey & Smessaert (2016) Duality in Logic and Language. To appear in J.-Y. Béziau (ed.)*Encyclopaedia of Logic*. College Publications.
- Löbner (1990). Wahr neben Falsch.
- Löbner (2011). Dual oppositions in lexical meaning. In Maienborn, C., von Heusinger, K., and Portner, P. (eds.) *Semantics: An International Handbook of Natural Language Meaning.*
- Peters & Westerstähl (2006). *Quantifiers in Language and Logic*.

KU LEUV

References

- Smessaert (2012). The Classical Aristotelian Hexagon versus the Modern Duality Hexagon. *Logica Universalis*.
- Smessaert & Demey (2014). Logical Geometries and Information in the Square of Oppositions. *Journal of Logic, Language and Information*.
- Westerståhl (2012). Classical vs. modern squares of opposition, and beyond.