KU LEUVEN

Tutorial: An Introduction to Logical Geometry: part I Decorations and bitstrings

Hans Smessaert & Lorenz Demey Fifth World Congress on the Square of Oppositions

Easter Island, November 2016

Introduction

- Central aim of Logical Geometry
- Background of Logical Geometry
- Structure of the tutorial

2 Bitstrings in LG: the basics

- 3 Decorations: applications in logic, linguistics and cognition
 - Decorations: modal logic S5
 - Decorations: subjective quantifiers
 - Decorations: gradable adjectives and colour terms

4 Bitstrings anno 2016

- Earlier results and limitations
- The bitstring technique
- New decorations: public announcements, definite descriptions

KU LEU

5 Summary Part I

Introduction to Logical Geometry - H. Smessaert & L. Demey

KULEU

Introduction

- Central aim of Logical Geometry
- Background of Logical Geometry
- Structure of the tutorial
- 2 Bitstrings in LG: the basics
- 3 Decorations: applications in logic, linguistics and cognition
 - Decorations: modal logic S5
 - Decorations: subjective quantifiers
 - Decorations: gradable adjectives and colour terms
- 4 Bitstrings anno 2016
 - Earlier results and limitations
 - The bitstring technique
 - New decorations: public announcements, definite descriptions

5 Summary Part I

Introduction to Logical Geometry – H. Smessaert & L. Demey

The central aim of Logical Geometry (www.logicalgeometry.org) is

- to develop an *interdisciplinary framework*
- for the study of *logical diagrams*
- in the analysis of *logical, linguistic and conceptual systems*.

More in particular we:

- analyse logical relations of opposition, implication and duality between expressions in various **logical**, **linguistic** & **conceptual** systems.
- study the **logical diagrams** from the perspective of:
 - their abstract-logical properties
 - their visual-geometric properties
- develop an **interdisciplinary framework** integrating insights from logic, formal semantics, algebra, group theory, lattice theory, computer graphics, cognitive psychology, information visualisation and diagrams design.

Introduction to Logical Geometry – H. Smessaert & L. Demey

KU LEL

Introduction

- Central aim of Logical Geometry
- Background of Logical Geometry
- Structure of the tutorial

2 Bitstrings in LG: the basics

- 3 Decorations: applications in logic, linguistics and cognition
 - Decorations: modal logic S5
 - Decorations: subjective quantifiers
 - Decorations: gradable adjectives and colour terms

4 Bitstrings anno 2016

- Earlier results and limitations
- The bitstring technique
- New decorations: public announcements, definite descriptions

KULEU

5 Summary Part I

Introduction to Logical Geometry - H. Smessaert & L. Demey

KULEU

Introduction

- Central aim of Logical Geometry
- Background of Logical Geometry
- Structure of the tutorial
- 2 Bitstrings in LG: the basics
- 3 Decorations: applications in logic, linguistics and cognition
 - Decorations: modal logic S5
 - Decorations: subjective quantifiers
 - Decorations: gradable adjectives and colour terms
- 4 Bitstrings anno 2016
 - Earlier results and limitations
 - The bitstring technique
 - New decorations: public announcements, definite descriptions

5 Summary Part I

Introduction to Logical Geometry - H. Smessaert & L. Demey

- Hans Smessaert (1993). The Logical Geometry of Comparison and Quantification. A cross-categorial analysis of Dutch determiners and aspectual adverbs. PhD in linguistics, KU Leuven, Belgium.
- Lorenz Demey (2014). *Believing in Logic and Philosophy*. PhD in logic and analytic philosophy, KU Leuven, Belgium.
- Koen Roelandt (2016). *Most or the Art of Compositionality: Dutch de/het meeste at the Syntax-Semantics Interface*. PhD in linguistics, KU Leuven, Belgium.

- Closely related PhD dissertations:
 - Dany Jaspers (2005). *Operators in the Lexicon. On the Negative Logic of Natural Language*. PhD in linguistics, Leiden University, The Netherlands.
 - Alessio Moretti (2009). *The geometry of logical opposition*. PhD in logic, University of Neuchâtel, Switzerland.
- World Congress on the Square of Opposition:
 - Square 2007: Montreux, Switzerland
 - Square 2010: Corte, Corsica
 - Square 2012: Beirut, Lebanon
 - Square 2014: Vatican, Roma
 - Square 2016: Easter Island, Chile

• International Conference on the Theory and Application of Diagrams:

- Diagrams 2012: Canterbury, UK
- Diagrams 2014: Melbourne, Australia
- Diagrams 2016: Philadelphia, US

Introduction to Logical Geometry – H. Smessaert & L. Demey

KU LEU

Introduction

- Central aim of Logical Geometry
- Background of Logical Geometry
- Structure of the tutorial

2 Bitstrings in LG: the basics

- 3 Decorations: applications in logic, linguistics and cognition
 - Decorations: modal logic S5
 - Decorations: subjective quantifiers
 - Decorations: gradable adjectives and colour terms

4 Bitstrings anno 2016

- Earlier results and limitations
- The bitstring technique
- New decorations: public announcements, definite descriptions

KULEU

5 Summary Part I

Introduction to Logical Geometry - H. Smessaert & L. Demey

KU LEUV

Introduction

- Central aim of Logical Geometry
- Background of Logical Geometry
- Structure of the tutorial
- 2 Bitstrings in LG: the basics
- 3 Decorations: applications in logic, linguistics and cognition
 - Decorations: modal logic S5
 - Decorations: subjective quantifiers
 - Decorations: gradable adjectives and colour terms
- 4 Bitstrings anno 2016
 - Earlier results and limitations
 - The bitstring technique
 - New decorations: public announcements, definite descriptions
- 5 Summary Part I

Introduction to Logical Geometry - H. Smessaert & L. Demey

• Part I: Decorations and bitstrings

- Bitstrings: the basics
- Decorations: applications in logic, linguistics and cognition
- Bitstrings anno 2016
- Summary Part I: Interdisciplinarity of LG
- Part II: Abstract-logical properties of diagrams
 - Logic: opposition relations versus implication relations
 - Logic: logic-sensitivity and Boolean subtypes
 - Logic: Aristotelian relations versus duality relations
 - Summary Part II: Interdisciplinarity of LG
- Part III: Visual-geometric properties of diagrams
 - Geometry: projections
 - Geometry: subdiagrams and complementarity
 - Geometry: diagram design principles
 - Summary Part III: Interdisciplinarity of LG

Introduction to Logical Geometry – H. Smessaert & L. Demey

KU LEUV

Introduction

- Central aim of Logical Geometry
- Background of Logical Geometry
- Structure of the tutorial
- 2 Bitstrings in LG: the basics
- 3 Decorations: applications in logic, linguistics and cognition
 - Decorations: modal logic S5
 - Decorations: subjective quantifiers
 - Decorations: gradable adjectives and colour terms
- ④ Bitstrings anno 2016
 - Earlier results and limitations
 - The bitstring technique
 - New decorations: public announcements, definite descriptions

Summary Part I

Introduction to Logical Geometry – H. Smessaert & L. Demey

KU LEL

Introduction

- Central aim of Logical Geometry
- Background of Logical Geometry
- Structure of the tutorial

Bitstrings in LG: the basics

- Decorations: applications in logic, linguistics and cognition
 - Decorations: modal logic S5
 - Decorations: subjective quantifiers
 - Decorations: gradable adjectives and colour terms

4 Bitstrings anno 2016

- Earlier results and limitations
- The bitstring technique
- New decorations: public announcements, definite descriptions

5 Summary Part I

Introduction to Logical Geometry - H. Smessaert & L. Demey

KU LEUV

- Bitstrings are sequences of bits (0/1) that encode the denotations of formulas or expressions from:
 - logical systems: e.g. classical propositional logic, first-order logic, modal logic and public announcement logic
 - lexical fields: e.g. comparative quantification, subjective quantification, color terms and set inclusion relations
- Remark:
 - we use bitstrings to encode **formulas**, not **relations** between formulas
 - if a formula φ is encoded by the bitstring b, we write $\beta(\varphi)=b$
- Each bit provides an answer to a (binary) meaningful question (analysis of generalized quantifiers as sets of sets).

KU LEUV

 $A \cap B = \emptyset$

• Each question concerns a component (point or interval) of a scalar structure creating a partition of logical space:

 In Predicate Logic/GQT: Is R(A,B) true if A ⊆ B yes/no A ⊈ B and A ∩ B ≠ Ø yes/no

• Examples: $\begin{array}{ll} \beta(All \ A \ are \ B) &= 100 &= \langle \ yes, \ no, \ no \ \rangle \\ \beta(Some \ but \ not \ all \ A \ are \ B) &= 010 &= \langle \ no, \ yes, \ no \ \rangle \\ \beta(Not \ all \ A \ are \ B) &= 011 &= \langle \ no, \ yes, \ yes \ \rangle \end{array}$

yes/no

Introduction to Logical Geometry – H. Smessaert & L. Demey

KULE

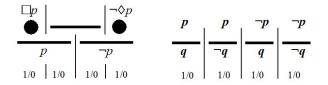
In Modal Logic: Is φ true if

 p is true in all possible worlds?
 yes/no
 p is true in some but not in all possible worlds?
 yes/no
 p is true in no possible worlds?
 yes/no

 β(◊p) = 110 = ⟨ yes, yes, no ⟩
 Examples: β(◊p ∧ ◊¬p) = 010 = ⟨ no, yes, no ⟩
 β(◊¬p) = 011 = ⟨ no, yes, yes ⟩

Modal Logic	GQT	level 1/0	level 2/3	GQT	Modal Logic
necessary $(\Box p)$	all	100	011	not all	not necessary $(\neg \Box p)$
<i>contingent</i> $(\neg \Box p \land \Diamond p)$	contingent $(\neg \Box p \land \Diamond p)$ some but not all		101	no or all	<i>not contingent</i> $(\Box p \lor \neg \Diamond p)$
impossible $(\neg \Diamond p)$	impossible $(\neg \Diamond p)$ no		110	some	possible $(\Diamond p)$
<i>contradiction</i> ($\Box p \land \neg \Box p$)	some and no	000	111	some or no	tautology $(\Box p \lor \neg \Box p)$

Introduction to Logical Geometry – H. Smessaert & L. Demey



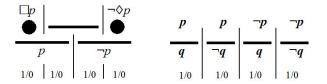
 In Modal Logic S5: Is φ true if: *p* is true in all possible worlds W? yes/no *p* is true in the actual world but not in all possible Ws? yes/no *p* is true in some possible Ws but not in the actual world? yes/no *p* is true in no possible worlds W? yes/no *g*(Δ*p*) = 1110 = (yes yes yes no)

Examples

$$\begin{array}{lll} \beta(\Diamond p) &= 1110 &= \langle \text{ yes, yes, yes, no } \rangle \\ \text{es:} & \beta(\Diamond p \land \Diamond \neg p) &= 0110 &= \langle \text{ no, yes, yes, no } \rangle \\ & \beta(\Diamond \neg p) &= 0111 &= \langle \text{ no, yes, yes, yes, yes} \rangle \end{array}$$

Introduction to Logical Geometry – H. Smessaert & L. Demey

KU LEU



Introduction to Logical Geometry – H. Smessaert & L. Demey

 $\Box p \land \neg \Box p$

$2^3=8$ bitstrings of length 3 $\rightsquigarrow 2^4=$ 16 bitstrings of length 4

Modal Logic S5	Propositional Logic	bitstrings level 1	bitstrings level 3	Propositional Logic	Modal Logic S5
$\Box p$	$p \wedge q$	1000	0111	$\neg (p \land q)$	$\neg \Box p$
$\neg \Box p \wedge p$	$\neg (p \rightarrow q)$	0100	1011	$p \rightarrow q$	$\Box p \lor \neg p$
$\Diamond p \land \neg p$	$\neg (p \leftarrow q)$	0010	1101	$p \leftarrow q$	$\neg \Diamond p \lor p$
$\neg \Diamond p$	$\neg (p \lor q)$	0001	1110	$p \lor q$	$\Diamond p$
Modal Logic S5	Propositional Logic	bitstrings level 2/0	bitstrings level 2/4	Propositional Logic	Modal Logic S5
p	p	1100	0011	$\neg p$	$\neg p$
$\Box p \lor (\Diamond p \land \neg p)$	q	1010	0101	$\neg q$	$\neg \Diamond p \lor (\neg \Box p \land p)$
$\Box p \lor \neg \Diamond p$	$p \leftrightarrow q$	1001	0110	$\neg(p \leftrightarrow q)$	$\neg \Box p \land \Diamond p$

1111

 $p \vee \neg p$

 $\Box p \lor \neg \Box p$

KU LEUVEN

0000

Introduction to Logical Geometry – H. Smessaert & L. Demey

 $p \wedge \neg p$

- Relative to a logical system S, two **formulas** φ, ψ are contradictory (CD) iff $S \models \neg(\varphi \land \psi)$ and $S \models \neg(\neg \varphi \land \neg \psi)$ contrary (C) iff $S \models \neg(\varphi \land \psi)$ and $S \not\models \neg(\neg \varphi \land \neg \psi)$ subcontrary (SC) iff $S \not\models \neg(\varphi \land \psi)$ and $S \models \neg(\neg \varphi \land \neg \psi)$ in subalternation (SA) iff $S \models \varphi \rightarrow \psi$ and $S \not\models \psi \rightarrow \varphi$
- In terms of bitstrings, two **bitstrings** b_1 and b_2 are contradictory (CD) iff $b_1 \wedge b_2 = 0 \cdots 0$ and $b_1 \vee b_2 = 1 \cdots 1$ contrary (C) iff $b_1 \wedge b_2 = 0 \cdots 0$ and $b_1 \vee b_2 \neq 1 \cdots 1$ subcontrary (SC) iff $b_1 \wedge b_2 \neq 0 \cdots 0$ and $b_1 \vee b_2 = 1 \cdots 1$ in subalternation (SA) iff $b_1 \wedge b_2 = b_1$ and $b_1 \vee b_2 \neq b_1$
- φ and ψ stand in some Aristotelian relation (defined for S) iff $\beta(\varphi)$ and $\beta(\psi)$ stand in that same relation (defined for bitstrings).
- *β* maps formulas from S to bitstrings, preserving Aristotelian structure (Representation Theorem for finite Boolean algebras)

Introduction to Logical Geometry – H. Smessaert & L. Demey

KU LEUV

Introduction

- Central aim of Logical Geometry
- Background of Logical Geometry
- Structure of the tutorial

2 Bitstrings in LG: the basics

Decorations: applications in logic, linguistics and cognition

- Decorations: modal logic S5
- Decorations: subjective quantifiers
- Decorations: gradable adjectives and colour terms

Bitstrings anno 2016

- Earlier results and limitations
- The bitstring technique
- New decorations: public announcements, definite descriptions

5 Summary Part I

Introduction to Logical Geometry - H. Smessaert & L. Demey

KU LEU

Introduction

- Central aim of Logical Geometry
- Background of Logical Geometry
- Structure of the tutorial

2 Bitstrings in LG: the basics

Decorations: applications in logic, linguistics and cognition Decorations: modal logic S5

- Decorations: subjective quantifiers
- Decorations: gradable adjectives and colour terms

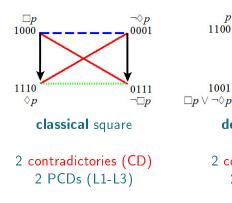
4 Bitstrings anno 2016

- Earlier results and limitations
- The bitstring technique
- New decorations: public announcements, definite descriptions

5 Summary Part I

Introduction to Logical Geometry - H. Smessaert & L. Demey

KU LEUV



2 subalternations (SA) 1 contrariety (C) 1 subcontrariety (SC)

2 contradictories (CD) 2 PCDs (L2-L2)

degenerate square

p 1100

1001

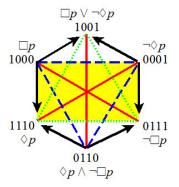
 $4 \times \text{unconnectedness}(U)$

Introduction to Logical Geometry – H. Smessaert & L. Demey

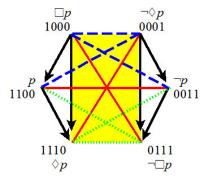
 $\neg \Box p \land \Diamond p$

0110

0011



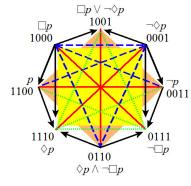
Jacoby-Sesmat-Blanché hexagon 3 PCDs 6 subalternations (SA) 3 contrarieties (C) 3 subcontrarieties (SC)



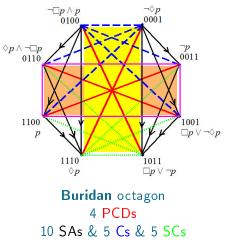
Sherwood-Czezowski hexagon 3 PCDs 6 subalternations (SA) 3 contrarieties (C) 3 subcontrarieties (SC)

Introduction to Logical Geometry – H. Smessaert & L. Demey

Decorations: octagons in modal logic S5



Béziau octagon 4 PCDs 10 SAs & 5 Cs & 5 SCs 4 × unconnectedness (U)



 $4 \times$ unconnectedness (U)

Introduction to Logical Geometry – H. Smessaert & L. Demey

Introduction

- Central aim of Logical Geometry
- Background of Logical Geometry
- Structure of the tutorial

2 Bitstrings in LG: the basics

Decorations: applications in logic, linguistics and cognition

- Decorations: modal logic S5
- Decorations: subjective quantifiers
- Decorations: gradable adjectives and colour terms

Bitstrings anno 2016

- Earlier results and limitations
- The bitstring technique
- New decorations: public announcements, definite descriptions

5 Summary Part I

Introduction to Logical Geometry - H. Smessaert & L. Demey

KU LEU

Introduction

- Central aim of Logical Geometry
- Background of Logical Geometry
- Structure of the tutorial

2 Bitstrings in LG: the basics

- Decorations: applications in logic, linguistics and cognition
 Decorations: modal logic S5
 - Decorations: subjective quantifiers
 - Decorations: gradable adjectives and colour terms

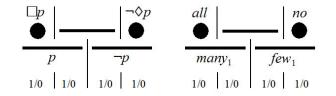
4 Bitstrings anno 2016

- Earlier results and limitations
- The bitstring technique
- New decorations: public announcements, definite descriptions

5 Summary Part I

Introduction to Logical Geometry - H. Smessaert & L. Demey

KULEU



level	S5-formula	bitstring	subjective quantifier
L2	p	1100	many ₁
	$\neg p$	0011	few1
L1	$p \land \neg \Box p$	0100	many ₁ but not all
	$\neg p \land \Diamond p$	0010	at least one but few $_1$

The conjunctions $many_1$ but not all and at least one but few_1 create the L1 elements 0100 and 0010 by excluding the extreme values of the tripartition, i.e. all (1000) and no (0001), respectively.

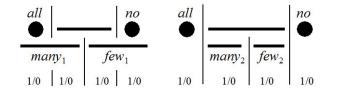
KU LEUV

Introduction to Logical Geometry – H. Smessaert & L. Demey

- entailments in S5
 - from L1 'necessity' (1000) to L2 'actual truth' (1100)
 - from L1 'impossibility' (0001) to L2 'actual falsehood' (0011)
- analogous entailments for subjective quantifiers
 - from L1 all (1000) to L2 many₁ (1100)
 - from L1 no (0001) to L2 few₁ (0011)
- suppose that John has read all three books in the universe of discourse
 - John has read all books is obviously true
 - John has read many books is very likely to be considered false ('three books' does not really count as 'many books')

• suppose that John has read none of the books in the univ. of discourse

- John has read no books is obviously true
- John has read few books is much less obvious (conflict with the existential presupposition of few)
- **solution**: two-sided readings for *few* and *many*



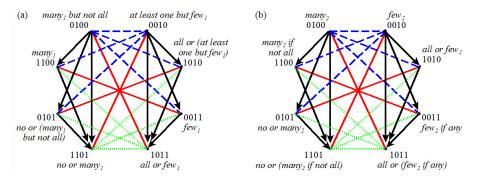
level	Béziau's analysis	bitstring	alternative analysis
L2	many ₁	1100	many ₂ if not all
	few1	0011	few $_2$ if any
L1	many ₁ but not all	0100	many ₂
	at least one but few $_1$	0010	few_2

level 2 **disjunctions** = lexically complex expressions, cfr. English *little or no*; Dutch *weinig of geen* and French *peu ou pas*

KU LEUVE

Introduction to Logical Geometry – H. Smessaert & L. Demey

Decorations: alternative two-sided analysis of subjective Qs 31



KU LEUVEN

- contradiction: 2 × L1-L3 and 2 × L2-L2 → many₁/few₁
- contrariety: 1 × L1-L1 and 4 × L1-L2 → many₂/few₂
- subcontrariety: 1 x L3-L3 and 4 x L2-L3
- subalternation: 4 transitivity triangles L1-L2-L3
- unconnectedness square: 4 pairs of L2-L2

Introduction to Logical Geometry – H. Smessaert & L. Demey

Introduction

- Central aim of Logical Geometry
- Background of Logical Geometry
- Structure of the tutorial

2 Bitstrings in LG: the basics

Decorations: applications in logic, linguistics and cognition

- Decorations: modal logic S5
- Decorations: subjective quantifiers
- Decorations: gradable adjectives and colour terms

Bitstrings anno 2016

- Earlier results and limitations
- The bitstring technique
- New decorations: public announcements, definite descriptions

5 Summary Part I

Introduction to Logical Geometry - H. Smessaert & L. Demey

KU LEU

Introduction

- Central aim of Logical Geometry
- Background of Logical Geometry
- Structure of the tutorial

2 Bitstrings in LG: the basics

Decorations: applications in logic, linguistics and cognition

- Decorations: modal logic S5
- Decorations: subjective quantifiers
- Decorations: gradable adjectives and colour terms

Bitstrings anno 2016

- Earlier results and limitations
- The bitstring technique
- New decorations: public announcements, definite descriptions

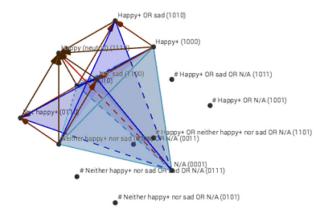
5 Summary Part I

Introduction to Logical Geometry - H. Smessaert & L. Demey

KULEU

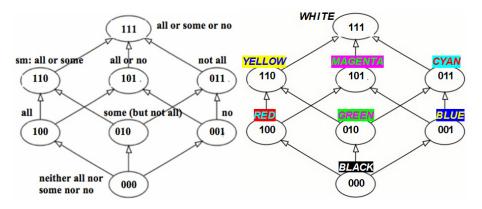
	Happy [±]			
Happy ⁺	Neither happy ⁺ nor sad	Sad	N/A]
1	0	0	0	Happy ⁺
0	1	0	0	Neither happy ⁺ nor sad
0	0	1	0	Sad
0	0	0	1	N/A
1	1	0	0	$Happy^+ OR$ neither $happy^+$ nor sad
1	0	1	0	$Happy^+ OR sad$
0	1	1	0	Neither happy $^+$ nor sad ${ m OR}$ sad
1	1	1	0	Happy [±]
1	0	0	1	Happy ⁺ OR N/A
0	1	0	1	Neither happy ⁺ nor sad $OR N/A$
0	0	1	1	Sad $OR N/A$
1	1	0	1	Happy ⁺ OR neither happy ⁺ nor sad OR N/A
1	0	1	1	Happy ⁺ OR sad OR N/A
0	1	1	1	Neither happy ⁺ nor sad OR sad OR N/A

Introduction to Logical Geometry - H. Smessaert & L. Demey



Koen Roelandt (2016). *Most or the Art of Compositionality: Dutch de/het meeste at the Syntax-Semantics Interface.* PhD in linguistics, KU Leuven.

Introduction to Logical Geometry – H. Smessaert & L. Demey



Dany Jaspers (2012). Logic and colour. Logica Universalis 6, 227-48.

Introduction to Logical Geometry – H. Smessaert & L. Demey

Introduction

- Central aim of Logical Geometry
- Background of Logical Geometry
- Structure of the tutorial
- 2 Bitstrings in LG: the basics
- 3 Decorations: applications in logic, linguistics and cognition
 - Decorations: modal logic S5
 - Decorations: subjective quantifiers
 - Decorations: gradable adjectives and colour terms

Bitstrings anno 2016

- Earlier results and limitations
- The bitstring technique
- New decorations: public announcements, definite descriptions

5 Summary Part I

Introduction to Logical Geometry - H. Smessaert & L. Demey

Introduction

- Central aim of Logical Geometry
- Background of Logical Geometry
- Structure of the tutorial
- 2 Bitstrings in LG: the basics
- 3 Decorations: applications in logic, linguistics and cognition
 - Decorations: modal logic S5
 - Decorations: subjective quantifiers
 - Decorations: gradable adjectives and colour terms

Bitstrings anno 2016

- Earlier results and limitations
- The bitstring technique
- New decorations: public announcements, definite descriptions

5 Summary Part I

Introduction to Logical Geometry - H. Smessaert & L. Demey

Unconnectedness (logical independence):

- absence of any Aristotelian relation
- $\bullet \ \varphi$ and ψ are unconnected iff:
 - arphi and ψ may be true together
 - arphi and ψ may be false together
 - arphi does not entail ψ
 - ψ does not entail arphi
- Unconnectedness requires bitstrings of length at least 4
- Theorem: φ and ψ unconnected $\Rightarrow \beta(\varphi)$ and $\beta(\psi)$ have \geq 4 bits
- More details in Tutorial Part II (on informativity and opposition relations versus implication relations)

Calculating (sub)contraries

• For any bitstring of length n and level i we can use simple combinatorial arguments to calculate the number of:

contradictories	#CD	= 1
contraries	#C	$= 2^{n-i} - 1$
subcontraries	#SC	$= 2^i - 1$
non-contradictories	#NCD	$= (2^{n-i} - 1)(2^i - 1)$

- Note that #CD < #C, #SC < #NCD iff 1 < i < n-1
- Note that if $i \approx \frac{n}{2}$, then $\#C \approx \#SC$
- Bitstrings in middle levels have similar numbers of contraries and subcontraries
- For the relevance of these observations see Tutorial Part II (on informativity and opposition relations versus implication relations)

Introduction to Logical Geometry – H. Smessaert & L. Demey

Use bitstrings to study embeddings

• Boolean closure of bitstrings length 4 $\stackrel{2009}{\Longrightarrow}$ rhombic dodecahedron (RDH)

rhombic dodecahedron \sim bitstrings of length 4 strong JSB hexagon \sim bitstrings of length 3

- compression of bitstrings: length 4 \rightsquigarrow length 3
- e.g. $b_1 = b_2$: **11**00 \rightsquigarrow **1**00, **00**10 \rightsquigarrow **0**10, **00**11 \rightsquigarrow **0**11
- ullet 6 strong JSB hexagons in RDH \sim 6 compressions length 4 \rightsquigarrow length 3

•
$$b_2 = b_3$$
, $b_1 = b_2$, $b_3 = b_4$, $b_1 = b_4$, $b_1 = b_3$, $b_2 = b_4$
(1950s) (2003) (2003) (2005*) (2005) (2005)

Introduction to Logical Geometry – H. Smessaert & L. Demey

Bitstrings: diagrammatic effectiveness

How many hexagons can be constructed with bitstrings of length ℓ ?

- 2^ℓ bitstrings of length $\ell \rightsquigarrow (2^\ell-2)$ contingent bitstrings of length ℓ
- bitstrings are chosen in contradictory pairs: $\frac{(2^{\ell}-2)(2^{\ell}-4)(2^{\ell}-6)}{48}$

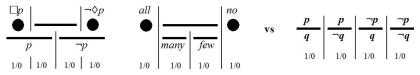
	$\ell = 3$	$\ell = 4$	$\ell = 5$	$\ell = 6$	$\ell=7$
٠	$\frac{(6)(4)(2)}{48}$	$\frac{(14)(12)(10)}{48}$	$\frac{(30)(28)(26)}{48}$	$\frac{(62)(60)(58)}{48}$	$\frac{(126)(124)(122)}{48}$
	1	35	455	4495	39711

- computational importance of bitstrings for generating hexagons.
- Different types of hexagons require bitstrings of different length:
 - strong Jacoby-Sesmat-Blanché (JSB) requires length 3
 - weak JSB, Sherwood-Czezowski, U4 and U12 require length 4
 - U8 requires length 5
 - no hexagons require length 6, 7 ...

Bitstrings: linguistic and cognitive effectiveness

- Bitstrings generate new questions about
 - the linguistic/cognitive aspects of the expressions they encode
 - the relative weight/strength of individual bit positions inside bitstrings
 - the underlying scalar/linear structure of the conceptual domain
- Edges versus center in bitstrings of length 3

• Bitstrings of length 4 as refinements/expansions of bitstrings of length 3



Introduction to Logical Geometry – H. Smessaert & L. Demey

KU LEL

Bitstrings: linguistic and cognitive effectiveness

- From mathematical/algebraic perspective no difference (so far) between
 - 'linear' bitstrings (such as 1010)
 - 'non-linear' bitstrings (such as $1_1^0 0$)
- From linguistic/cognitive perspective difference is relevant :
 - Linear bitstrings imply that all questions (all bits) about a lexical field can be situated on a single dimension
 - \rightsquigarrow comparative quantification, proportional quantification, propositional connectives, $all/many_2/few_2/no$
 - Non-linear bitstrings imply that the various questions belong to fundamentally distinct dimensions
 → modality in S5, all/John/not-John/no, all/many₁/few₁/no
 - Formulate empirical hypotheses concerning the cognitive complexity (e.g. processing times) of these lexical fields.

 → future research

Bitstrings: limitations of the original formulation

- It is not always clear how 'sensitive' bitstrings are to the specific properties of the underlying logical system: two formulas may enter into different Aristotelian relations with one another depending on the logical system and should therefore be assigned different bitstrings accordingly.
- The complex interplay between Boolean and Aristotelian structure requires further investigation: some fragments which have an isomorphic Aristotelian structure may nevertheless not be isomorphic from a Boolean point of view.
- The current approach does not provide a systematic strategy for establishing a bitstring semantics for any fragment \mathcal{F} of any logical system S (e.g. formulas from Public Announcement Logic or the multi-operator formulas in Avicenna/Buridan)

 \Rightarrow develop a more mathematically mature version of bitstring semantics that is able to overcome these different limitations

Introduction to Logical Geometry – H. Smessaert & L. Demey

Introduction

- Central aim of Logical Geometry
- Background of Logical Geometry
- Structure of the tutorial
- 2 Bitstrings in LG: the basics
- 3 Decorations: applications in logic, linguistics and cognition
 - Decorations: modal logic S5
 - Decorations: subjective quantifiers
 - Decorations: gradable adjectives and colour terms

Bitstrings anno 2016

- Earlier results and limitations
- The bitstring technique
- New decorations: public announcements, definite descriptions

5 Summary Part I

Introduction to Logical Geometry - H. Smessaert & L. Demey

Introduction

- Central aim of Logical Geometry
- Background of Logical Geometry
- Structure of the tutorial
- 2 Bitstrings in LG: the basics
- 3 Decorations: applications in logic, linguistics and cognition
 - Decorations: modal logic S5
 - Decorations: subjective quantifiers
 - Decorations: gradable adjectives and colour terms

Bitstrings anno 2016

- Earlier results and limitations
- The bitstring technique
- New decorations: public announcements, definite descriptions

5 Summary Part I

Introduction to Logical Geometry - H. Smessaert & L. Demey

Partitions Induced by Logical Fragments

- Let S be a logical system, and let $\mathcal{F} = \{\varphi_1, \dots, \varphi_m\} \subseteq \mathcal{L}_S$ be a finite fragment of the language of S.
- The partition of S induced by ${\mathcal F}$ is

 $\Pi_{\mathsf{S}}(\mathcal{F}) := \{ \alpha \in \mathcal{L}_{\mathsf{S}} \mid \alpha \equiv_{\mathsf{S}} \pm \varphi_1 \land \dots \land \pm \varphi_m, \text{ and } \alpha \text{ is S-consistent} \}.$

In this definition, $\pm \varphi$ stands for either φ or $\neg \varphi$. Furthermore, the formulas $\alpha \in \Pi_{\mathsf{S}}(\mathcal{F})$ will be called *anchor formulas*. They are:

- mutually exclusive: $S \models \neg(\alpha_i \land \alpha_j)$ for distinct $\alpha_i, \alpha_j \in \Pi_S(\mathcal{F})$
- jointly exhaustive: $S \models \bigvee \Pi_{S}(\mathcal{F})$
- Each anchor formula is thus equivalent to a conjunction consisting of $m = |\mathcal{F}|$ conjuncts. In many circumstances (for example when $\neg \varphi_i \equiv_{\mathsf{S}} \varphi_j$ for some $\varphi_i, \varphi_j \in \mathcal{F}$), these conjunctions can be simplified.

Introduction to Logical Geometry – H. Smessaert & L. Demey

The bitstring technique

Bitstrings based on a partition

• Consider a finite fragment \mathcal{F} and the partition $\Pi_{\mathsf{S}}(\mathcal{F}) = \{\alpha_1, \ldots, \alpha_n\}$ induced by it. For every $\varphi \in \mathbb{B}(\mathcal{F})$, we define a bitstring $\beta_{\mathsf{S}}^{\mathcal{F}}(\varphi) \in \{0, 1\}^n$ as follows:

 $\text{for each bit position } 1 \leq i \leq n \colon [\beta_{\mathsf{S}}^{\mathcal{F}}(\varphi)]_i := \begin{cases} 1 & \text{if } \models_{\mathsf{S}} \alpha_i \to \varphi, \\ 0 & \text{if } \models_{\mathsf{S}} \alpha_i \to \neg \varphi. \end{cases}$

- For each $\varphi \in \mathbb{B}(\mathcal{F})$, it holds that $\varphi \equiv_{\mathsf{S}} \bigvee \{ \alpha_i \in \Pi_{\mathsf{S}}(\mathcal{F}) \mid [\beta_{\mathsf{S}}^{\mathcal{F}}(\varphi)]_i = 1 \}.$
- Each formula φ ∈ B(F) can thus be written as a disjunction of anchor formulas α_i ∈ Π_S(F), which are themselves conjunctions of (negated) formulas ±φ_j ∈ F (cfr. *disjunctive normal forms*).
- if $\Pi_{\mathsf{S}}(\mathcal{F}) = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5\}$, and $\varphi \equiv_{\mathsf{S}} \alpha_2 \vee \alpha_3 \vee \alpha_5$, then represent φ as the bitstring 01101

Introduction to Logical Geometry – H. Smessaert & L. Demey

KU LE

Correlation between Fragment Size and Bitstring Length If we have a logical fragment \mathcal{F} of size $m := |\mathcal{F}|$ and the partition induced by it is of size $n := |\Pi_{S}(\mathcal{F})|$, then

- Theorem A bounds m in terms of n: $\lceil \log_2(n) \rceil \leq m \leq 2^n$, Theorem B bounds n in terms of m: $\lceil \log_2(m) \rceil \leq n \leq 2^m$.
- Theorem A determines the size of a fragment m, given the minimal bitstring length n needed to represent it.
- Theorem B determines the minimal bitstring length n_i given a logical fragment of size m.
- Theorems A and B can be said to be each other's inverses. The lower and upper bounds are resp. logarithmic and exponential, and thus diverge at a double-exponential rate.

KULEU

Introduction

- Central aim of Logical Geometry
- Background of Logical Geometry
- Structure of the tutorial
- 2 Bitstrings in LG: the basics
- 3 Decorations: applications in logic, linguistics and cognition
 - Decorations: modal logic S5
 - Decorations: subjective quantifiers
 - Decorations: gradable adjectives and colour terms

Bitstrings anno 2016

- Earlier results and limitations
- The bitstring technique
- New decorations: public announcements, definite descriptions

5 Summary Part I

Introduction to Logical Geometry - H. Smessaert & L. Demey

Introduction

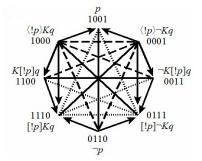
- Central aim of Logical Geometry
- Background of Logical Geometry
- Structure of the tutorial
- 2 Bitstrings in LG: the basics
- 3 Decorations: applications in logic, linguistics and cognition
 - Decorations: modal logic S5
 - Decorations: subjective quantifiers
 - Decorations: gradable adjectives and colour terms

Bitstrings anno 2016

- Earlier results and limitations
- The bitstring technique
- New decorations: public announcements, definite descriptions

5 Summary Part I

Introduction to Logical Geometry - H. Smessaert & L. Demey

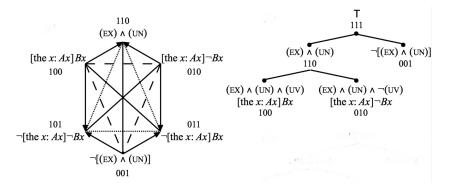


For example, for the formula $K[!p]q \in \mathcal{F}$ we have:

$$\begin{split} &[\beta_{\mathsf{PAL}}^{\mathcal{F}}(K[!p]q)]_1 = 1\\ &[\beta_{\mathsf{PAL}}^{\mathcal{F}}(K[!p]q)]_2 = 1\\ &[\beta_{\mathsf{PAL}}^{\mathcal{F}}(K[!p]q)]_3 = 0\\ &[\beta_{\mathsf{PAL}}^{\mathcal{F}}(K[!p]q)]_4 = 0 \end{split}$$

KU LEUVEN

Introduction to Logical Geometry – H. Smessaert & L. Demey



The partition Π_{TDD}^{FOL} consists of the following anchor formulas:

$$\begin{array}{rcl} \alpha_1 &:= & [\mathsf{the} \; x \colon Ax] Bx, \\ \alpha_2 &:= & [\mathsf{the} \; x \colon Ax] \neg Bx, \\ \alpha_3 &:= & \neg [(\mathsf{EX}) \land (\mathsf{UN})]. \end{array}$$

Introduction to Logical Geometry - H. Smessaert & L. Demey

Introduction

- Central aim of Logical Geometry
- Background of Logical Geometry
- Structure of the tutorial
- 2 Bitstrings in LG: the basics
- 3 Decorations: applications in logic, linguistics and cognition
 - Decorations: modal logic S5
 - Decorations: subjective quantifiers
 - Decorations: gradable adjectives and colour terms
- 4 Bitstrings anno 2016
 - Earlier results and limitations
 - The bitstring technique
 - New decorations: public announcements, definite descriptions

5 Summary Part I

Introduction to Logical Geometry - H. Smessaert & L. Demey

Introduction

- Central aim of Logical Geometry
- Background of Logical Geometry
- Structure of the tutorial
- 2 Bitstrings in LG: the basics
- 3 Decorations: applications in logic, linguistics and cognition
 - Decorations: modal logic S5
 - Decorations: subjective quantifiers
 - Decorations: gradable adjectives and colour terms
- ④ Bitstrings anno 2016
 - Earlier results and limitations
 - The bitstring technique
 - New decorations: public announcements, definite descriptions

Summary Part I

Introduction to Logical Geometry – H. Smessaert & L. Demey

KU LEL

- decorations from a wide range of fields/applications:
 - logic:
 - modal logic S5
 - Public Announcement Logic
 - definite descriptions
 - Inguistics:
 - subjective quantifiers
 - proportional quantifiers
 - gradable adjectives
 - definite descriptions
 - cognition:
 - colour terms
 - knowledge representation
- new bitstring technique:
 - Boolean algebra
 - group theory
 - combinatorics

Introduction to Logical Geometry – H. Smessaert & L. Demey

• Part I: Decorations and bitstrings

- Bitstrings: the basics
- Decorations: applications in logic, linguistics and cognition
- Bitstrings anno 2016
- Summary Part I: Interdisciplinarity of LG
- Part II: Abstract-logical properties of diagrams
 - Logic: opposition relations versus implication relations
 - Logic: logic-sensitivity and Boolean subtypes
 - Logic: Aristotelian relations versus duality relations
 - Summary Part II: Interdisciplinarity of LG
- Part III: Visual-geometric properties of diagrams
 - Geometry: projections
 - Geometry: subdiagrams and complementarity
 - Geometry: diagram design principles
 - Summary Part III: Interdisciplinarity of LG

Introduction to Logical Geometry – H. Smessaert & L. Demey

Thank you!

More info: www.logicalgeometry.org

Introduction to Logical Geometry – H. Smessaert & L. Demey