KULEUVEN

Tutorial: An Introduction to Logical Geometry: part II
Abstract-logical properties of diagrams
Hans Smessaert \& Lorenz Demey
Fifth World Congress on the Square of Oppositions

Easter Island, November 2016

- Part I: Decorations and bitstrings
- Bitstrings: the basics
- Decorations: applications in logic, linguistics and cognition
- Bitstrings anno 2016
- Summary Part I: Interdisciplinarity of LG
- Part II: Abstract-logical properties of diagrams
- Logic: opposition relations versus implication relations
- Logic: logic-sensitivity and Boolean subtypes
- Logic: Aristotelian relations versus duality relations
- Summary Part II: Interdisciplinarity of LG
- Part III: Visual-geometric properties of diagrams
- Geometry: projections
- Geometry: subdiagrams and complementarity
- Geometry: diagram design principles
- Summary Part III: Interdisciplinarity of LG

Structure of the tutorial: Part II

(1) Introduction
(2) Logic: opposition relations versus implication relations

- The Opposition and Implication Geometries
- Informativity
- Unconnectedness
(3) Logic: logic-sensitivity and Boolean subtypes
- Logic-sensitivity
- Boolean subtypes
(4) Logic: Aristotelian relations versus duality relations
- Aristotelian squares and Duality squares
- Conceptual independence of Aristotelian \& Duality relations
- Duality relations from square to cube
(5) Summary Part II

(1) Introduction

(2) Logic: opposition relations versus implication relations

- The Opposition and Implication Geometries
- Informativity
- Unconnectedness
(3) Logic: logic-sensitivity and Boolean subtypes
- Logic-sensitivity
- Boolean subtypes
(4) Logic: Aristotelian relations versus duality relations
- Aristotelian squares and Duality squares
- Conceptual independence of Aristotelian \& Duality relations
- Duality relations from square to cube
(5) Summary Part II

Introduction to Logical Geometry - H. Smessaert \& L. Demey
(2) Logic: opposition relations versus implication relations

- The Opposition and Implication Geometries
- Informativity
- Unconnectedness
(3) Logic: logic-sensitivity and Boolean subtypes
- Logic-sensitivity
- Boolean subtypes
(9) Logic: Aristotelian relations versus duality relations
- Aristotelian squares and Duality squares
- Conceptual independence of Aristotelian \& Duality relations
- Duality relations from square to cube
(5) Summary Part II

Introduction to Logical Geometry - H. Smessaert \& L. Demey

The Square of Oppositions

- Aristotelian square as the visual representation of a fragment of the Aristotelian geometry (diagrams visualize modulo logical equivalence)
- geometry $=$ formulas and relations between them
- the four Aristotelian relations (relative to a logical system S):
φ and ψ are said to be contradictory iff $\quad \mathrm{S} \equiv \neg(\varphi \wedge \psi) \quad$ and $\quad \mathrm{S} \equiv \neg(\neg \varphi \wedge \neg \psi)$ contrary subcontrary in subalternation
$\mathrm{S}=\neg(\varphi \wedge \psi) \quad$ and $\quad \mathrm{S} \not \vDash \neg \neg(\neg \varphi \wedge \neg \psi)$
iff $\quad \mathrm{S} \not \vDash \neg(\varphi \wedge \psi) \quad$ and $\quad \mathrm{S} \vDash \neg(\neg \varphi \wedge \neg \psi)$
iff $\quad \mathrm{S} \mid=\varphi \rightarrow \psi \quad$ and $\quad \mathrm{S} \not \models \psi \rightarrow \varphi$
(assumption: S has classical negation, conjunction, implication)

Generalizations of the Aristotelian Square

- throughout history: several proposals to extend the square
- more formulas, more relations
- larger and more complex diagrams
- hexagons, octagons, cubes and other three-dimensional figures...

The Success of the Aristotelian Square

- the square and its extensions: hexagon, octagon, RDH, ...
- the extensions are very interesting
- well-motivated (singular propositions, Boolean closure)
- throughout history (Sherwood hexagon, Buridan octagon)
- interrelations (e.g. 3 squares inside JSB hexagon)
- yet:
- (nearly) all logicians know about the square
- (nearly) no logicians know about its extensions
- our explanation: "the Aristotelian square is very informative"
- this claim sounds intuitive, but is also vague
- provide precise and well-motivated framework

Problems with the Aristotelian Geometry

- recall the Aristotelian geometry: φ and ψ are said to be

- problems with the Aristotelian geometry:
- not mutually exclusive: e.g. \perp and p are contrary and subaltern (problem disappears if we restrict to contingent formulas)
- not exhaustive: e.g. p and $\Delta p \wedge \diamond \neg p$ are in no Arist. relation at all (if φ is contingent, then φ is in no Arist. relation to itself)
- conceptual confusion: true/false together vs truth propagation
- 'together' \rightsquigarrow symmetrical relations (undirected)
- 'propagation' \rightsquigarrow asymmetrical relations (directed)
- the Opposition Geometry (OG): φ and ψ are

contradictory	iff	$S \models \neg(\varphi \wedge \psi)$	and	$S \models \neg(\neg \varphi \wedge \neg \psi)$
contrary	iff	$S \models \neg(\varphi \wedge \psi)$	and	$S \nLeftarrow \neg(\neg \varphi \wedge \neg \psi)$
subcontrary	iff	$S \not \models \neg(\varphi \wedge \psi)$	and	$S \models \neg(\neg \varphi \wedge \neg \psi)$
non-contradictory	iff	$\mathrm{S} \not \models \neg(\varphi \wedge \psi)$	and	$\mathrm{S} \not \models \neg(\neg \varphi \wedge \neg \psi)$

- the Implication Geometry (IG): φ and ψ are in

bi-implication	iff	$\mathrm{S} \models \varphi \rightarrow \psi$	and	$\mathrm{S} \vDash \psi \rightarrow \varphi$
left-implication	iff	$\mathrm{S} \models \varphi \rightarrow \psi$	and	$\mathrm{S} \not \models \psi \rightarrow \varphi$
right-implication	iff	$\mathrm{S} \not \models \varphi \rightarrow \psi$	and	$\mathrm{S} \vDash \psi \rightarrow \varphi$
non-implication	iff	$\mathrm{S} \not \models \varphi \rightarrow \psi$	and	$\mathrm{S} \not \vDash \psi \rightarrow \varphi$

- opposition relations: being true/false together
$\varphi \wedge \psi$ and $\neg \varphi \wedge \neg \psi$
- implication relations: truth propagation
$\varphi \wedge \neg \psi$ and $\neg \varphi \wedge \psi$

Motivating the New Geometries

- OG and IG jointly solve the problems of the Aristotelian geometry:
- each pair of formulas stands in exactly one opposition relation
- each pair of formulas stands in exactly one implication relation
- no more conceptual confusion
- conceptual independence, yet clear relationship (symmetry breaking):

$$
\begin{array}{lll}
\mathrm{CD}(\varphi, \psi) & \Leftrightarrow & \mathrm{BI}(\psi, \neg \varphi) \\
\mathrm{C}(\varphi, \psi) & \Leftrightarrow & \mathrm{LI}(\psi, \neg \varphi) \\
\mathrm{SC}(\varphi, \psi) & \Leftrightarrow & \operatorname{RI}(\psi, \neg \varphi) \\
\mathrm{NCD}(\varphi, \psi) & \Leftrightarrow & \operatorname{NI}(\psi, \neg \varphi)
\end{array}
$$

- Correia: two philosophical traditions
- square as a theory of negation
- square as a theory of consequence
commentaries on De Interpretatione commentaries on Prior Analytics
(2) Logic: opposition relations versus implication relations
- The Opposition and Implication Geometries
- Informativity
- Unconnectedness
(3) Logic: logic-sensitivity and Boolean subtypes
- Logic-sensitivity
- Boolean subtypes
(4) Logic: Aristotelian relations versus duality relations
- Aristotelian squares and Duality squares
- Conceptual independence of Aristotelian \& Duality relations
- Duality relations from square to cube
(5) Summary Part II

Introduction to Logical Geometry - H. Smessaert \& L. Demey
(2) Logic: opposition relations versus implication relations

- The Opposition and Implication Geometries
- Informativity
- Unconnectedness
(3) Logic: logic-sensitivity and Boolean subtypes
- Logic-sensitivity
- Boolean subtypes
(4) Logic: Aristotelian relations versus duality relations
- Aristotelian squares and Duality squares
- Conceptual independence of Aristotelian \& Duality relations
- Duality relations from square to cube
(3) Summary Part I'

Introduction to Logical Geometry - H. Smessaert \& L. Demey

- informativity of a relation holding between φ and ψ is inversely correlated with the number of states (models) it is compatible with
- informativity of the opposition and implication relations:

- close match between formal account and intuitions:
- e.g. CD is more informative than C
- if φ is known,
- announcing $\mathrm{CD}(\varphi, \psi)$ uniquely determines ψ
- announcing C (φ, ψ) doesn't uniquely determine ψ
- combinatorial results on finite Boolean algebras
- Boolean algebra \mathbb{B}_{n} with 2^{n} formulas, formula of level i :
- 1 contradictory
- $2^{n-i}-1$ contraries and $2^{i}-1$ subcontraries
- $\left(2^{n-i}-1\right)\left(2^{i}-1\right)$ non-contradictories
- $1<2^{n-i}-1,2^{i}-1<\left(2^{n-i}-1\right)\left(2^{i}-1\right)$ iff $1<i<n-1$
- coherent with earlier results:
- opposition and implication yield isomorphic informativity lattices
- $\mathrm{CD}(\varphi, \psi) \Leftrightarrow \mathrm{BI}(\psi, \neg \varphi), \ldots$

Informativity of the Aristotelian Geometry, I

- why is the Aristotelian square special? Because it is very informative diagram in a very informative geometry
- Aristotelian geometry: hybrid between
- opposition geometry: contradiction, contrariety, subcontrariety
- implication geometry: left-implication (subalternation)
- these relations are highly informative (in their geometries)

Informativity of the Aristotelian Geometry, II

- given any two formulas:
- they stand in exactly one opposition relation R
- they stand in exactly one implication relation S
- if R is strictly more informative than S, then R is Aristotelian
- if S is strictly more informative than R, then S is Aristotelian
- example 1: $\square p$ and $\diamond p$: non-contradiction and left-implication
- example 2: $\square p$ and $\square \neg p$: contrariety and non-implication
- example 3: Δp and $\square \neg p$: contradiction and non-implication

(2) Logic: opposition relations versus implication relations
- The Opposition and Implication Geometries
- Informativity
- Unconnectedness
(3) Logic: logic-sensitivity and Boolean subtypes
- Logic-sensitivity
- Boolean subtypes
(4) Logic: Aristotelian relations versus duality relations
- Aristotelian squares and Duality squares
- Conceptual independence of Aristotelian \& Duality relations
- Duality relations from square to cube
(5) Summary Part II

Introduction to Logical Geometry - H. Smessaert \& L. Demey
(2) Logic: opposition relations versus implication relations

- The Opposition and Implication Geometries
- Informativity
- Unconnectedness
(3) Logic: logic-sensitivity and Boolean subtypes
- Logic-sensitivity
- Boolean subtypes
(4) Logic: Aristotelian relations versus duality relations
- Aristotelian squares and Duality squares
- Conceptual independence of Aristotelian \& Duality relations
- Duality relations from square to cube
(5) Summary Part II

Introduction to Logical Geometry - H. Smessaert \& L. Demey

- given any two formulas:
- they stand in exactly one opposition relation R
- they stand in exactly one implication relation S
- what if neither relation is strictly more informative than the other?
- theorem: this can only occur in one case: NCD + NI (unconnectedness)

- Aristotelian gap $=$ information gap
- no Aristotelian relation at all (non-exhaustiveness of AG)
- combination of the two least informative relations
- no unconnectedness in the classical Aristotelian square

- no unconnectedness in the Jacoby-Sesmat-Blanché hexagon

- unconnectedness in the Béziau octagon
- e.g. p and $\Delta p \wedge \diamond \neg p$ are unconnected

Summary Informativity and Unconnectedness

- logical geometry: Aristotelian square of oppositions and its extensions
- the Aristotelian square is highly informative:
- Aristotelian geometry is hybrid: maximize informativity \Rightarrow applies to all Aristotelian diagrams
- avoid unconnectedness: minimize uninformativity \Rightarrow some Aristotelian diagrams succeed better than others
- classical square, JSB hexagon, SC hexagon don't have unconnectedness
- Béziau octagon (and many other diagrams) do have unconnectedness
- Q: what about the JSB hexagon, SC hexagon, etc.?
- equally informative as the square
- yet less widely known...
- A: requires yet another geometry: duality

(1) Introduction

(2) Logic: opposition relations versus implication relations

- The Opposition and Implication Geometries
- Informativity
- Unconnectedness
(3) Logic: logic-sensitivity and Boolean subtypes
- Logic-sensitivity
- Boolean subtypes
(4) Logic: Aristotelian relations versus duality relations
- Aristotelian squares and Duality squares
- Conceptual independence of Aristotelian \& Duality relations
- Duality relations from square to cube
(5) Summary Part II

Introduction to Logical Geometry - H. Smessaert \& L. Demey

(1) Introduction

(2) Logic: opposition relations versus implication relations

- The Opposition and Implication Geometries
- Informativity
- Unconnectedness
(3) Logic: logic-sensitivity and Boolean subtypes
- Logic-sensitivity
- Boolean subtypes
(4) Logic: Aristotelian relations versus duality relations
- Aristotelian squares and Duality squares
- Conceptual independence of Aristotelian \& Duality relations
- Duality relations from square to cube
(3 Summary Part II
Introduction to Logical Geometry - H. Smessaert \& L. Demey

Aristotelian diagrams are (highly) context-sensitive/logic-sensitive:

- by virtue of the Aristotelian relations themselves:
- two formulas may be contradictory in S_{1} (e.g. many $_{1} /$ few w_{1}) but contrary in S_{2} (e.g. many $\mathrm{m}_{2} /$ few $_{2}$)
- two formulas may be in subalternation in S_{1} (e.g. SYL) but unconnected in S_{2} (e.g. FOL)
- by virtue of the convention that Aristotelian diagrams only contain contingent formulas: two formulas may be tautological/contradictory in S_{1} but not in S_{2}.
- by virtue of the convention that Aristotelian diagrams only contain formulas up to logical equivalence: two formulas may be equivalent in S_{1} but not in S_{2} (e.g. $\square \square p$ and $\square p$ are in subalternation in T but equivalent in S4).

(1) Introduction

(2) Logic: opposition relations versus implication relations

- The Opposition and Implication Geometries
- Informativity
- Unconnectedness
(3) Logic: logic-sensitivity and Boolean subtypes
- Logic-sensitivity
- Boolean subtypes
(4) Logic: Aristotelian relations versus duality relations
- Aristotelian squares and Duality squares
- Conceptual independence of Aristotelian \& Duality relations
- Duality relations from square to cube
(5) Summary Part II

Introduction to Logical Geometry - H. Smessaert \& L. Demey

(1) Introduction

(2) Logic: opposition relations versus implication relations

- The Opposition and Implication Geometries
- Informativity
- Unconnectedness
(3) Logic: logic-sensitivity and Boolean subtypes
- Logic-sensitivity
- Boolean subtypes
(4) Logic: Aristotelian relations versus duality relations
- Aristotelian squares and Duality squares
- Conceptual independence of Aristotelian \& Duality relations
- Duality relations from square to cube
(5) Summary Part II

Introduction to Logical Geometry - H. Smessaert \& L. Demey

Boolean subtypes

Two fragments which have an isomorphic Aristotelian structure may

- nevertheless not be isomorphic from a Boolean point of view.
- require an encoding with bitstrings of different length

Strong versus weak JSB hexagons (Pellissier, 2008)

Introduction to Logical Geometry - H. Smessaert \& L. Demey

Buridan octagons for S 5 versus "combined operators":

(2) Logic: opposition relations versus implication relations

- The Opposition and Implication Geometries
- Informativity
- Unconnectedness
(3) Logic: logic-sensitivity and Boolean subtypes
- Logic-sensitivity
- Boolean subtypes
(4) Logic: Aristotelian relations versus duality relations
- Aristotelian squares and Duality squares
- Conceptual independence of Aristotelian \& Duality relations
- Duality relations from square to cube

Summary Part II
Introduction to Logical Geometry - H. Smessaert \& L. Demey

(1) Introduction

(2) Logic: opposition relations versus implication relations

- The Opposition and Implication Geometries
- Informativity
- Unconnectedness
(5) Logic: logic-sensitivity and Boolean subtypes
- Logic-sensitivity
- Boolean subtypes
(4) Logic: Aristotelian relations versus duality relations
- Aristotelian squares and Duality squares
- Conceptual independence of Aristotelian \& Duality relations
- Duality relations from square to cube
(3) Summary Part II

Introduction to Logical Geometry - H. Smessaert \& L. Demey

Two propositions are:
contradictory (CD) iff they cannot be true together and they cannot be false together,
contrary (C) iff they cannot be true together but they can be false together,
subcontrary (SC) iff they can be true together but they cannot be false together,
in subalternation (SA) iff the first proposition entails the second but the second doesn't entail the first

The set of Aristotelian relations is fundamentally hybrid:

- CD, C and SC are symmetric; definition ~being true/false together SA is not symmetric; definition \sim truth propagation.
- CD is a functional relation, but C, SC and SA are not.
- Smessaert \& Demey (2014)

Any fragment of 4 formulas from a logical language \mathcal{L} for a logical system S which is closed under negation (i.e. which consists of two pairs of contradictories) yields an Aristotelian square which is

$$
\begin{aligned}
\text { classical } & \equiv(2 \times \mathrm{CD})+(2 \times \mathrm{SA})+(1 \times \mathrm{C})+(1 \times \mathrm{SC}) \\
\text { degenerate } & \equiv(2 \times \mathrm{CD})
\end{aligned}
$$

classical Aristotelian square

degenerate Aristotelian square

The n-ary connectives/operators O_{1} and O_{2} are one another's:
external negation (EN) iff for all $\varphi_{1}, \ldots, \varphi_{n}$

$$
O_{2}\left(\varphi_{1}, \ldots, \varphi_{n}\right) \equiv \neg O_{1}\left(\varphi_{1}, \ldots, \varphi_{n}\right)
$$

internal negation (IN) iff for all $\varphi_{1}, \ldots, \varphi_{n}$

$$
O_{2}\left(\varphi_{1}, \ldots, \varphi_{n}\right) \equiv O_{1}\left(\neg \varphi_{1}, \ldots, \neg \varphi_{n}\right)
$$

dual negation (DN) iff for all $\varphi_{1}, \ldots, \varphi_{n}$

$$
O_{2}\left(\varphi_{1}, \ldots, \varphi_{n}\right) \equiv \neg O_{1}\left(\neg \varphi_{1}, \ldots, \neg \varphi_{n}\right)
$$

Transpose definitions of EN/IN/DN from operators to formulas: if operators O_{1} and O_{2} are each other's EN/IN/DN, then formulas $O_{1}\left(\varphi_{1} \ldots \varphi_{n}\right)$ and $O_{2}\left(\varphi_{1} \ldots \varphi_{n}\right)$ are said to be each other's EN/IN/DN as well.

The set of duality relations is fundamentally uniform:

- EN, IN and DN are all symmetric relations.
- EN, IN and DN are all functional relations.

Any fragment of 4 formulas from a logical language \mathcal{L} for a logical system S which is closed under negation (i.e. which consists of two pairs of contradictories) yields a duality square which is

classical duality square

degenerate duality square
(2) Logic: opposition relations versus implication relations

- The Opposition and Implication Geometries
- Informativity
- Unconnectedness
(3) Logic: logic-sensitivity and Boolean subtypes
- Logic-sensitivity
- Boolean subtypes
(4) Logic: Aristotelian relations versus duality relations
- Aristotelian squares and Duality squares
- Conceptual independence of Aristotelian \& Duality relations
- Duality relations from square to cube

Summary Part II

- The Opposition and Implication Geometries
- Informativity
- Unconnectedness
(3) Logic: logic-sensitivity and Boolean subtypes
- Logic-sensitivity
- Boolean subtypes
(4) Logic: Aristotelian relations versus duality relations
- Aristotelian squares and Duality squares
- Conceptual independence of Aristotelian \& Duality relations
- Duality relations from square to cube

Conceptual independence of Aristotelian \& Duality relations

- Löbner (1990,2011), Peters \& Westerståhl (2006), Westerståhl (2012), Demey (2012), Smessaert (2012).
- All duality relations are symmetric but not all Aristotelian relations are.
- All duality relations are functional but not all Aristotelian relations are.
- The duality relation IN corresponds to Aristotelian C and/or SC.
- Aristotelian relations are highly logic-sensitive, whereas duality relations are insensitive to underlying logic: Demey (2015), Demey \& Smessaert (2016).

classical Aristotelian square

classical duality square

(1) Introduction

(2) Logic: opposition relations versus implication relations

- The Opposition and Implication Geometries
- Informativity
- Unconnectedness
(5) Logic: logic-sensitivity and Boolean subtypes
- Logic-sensitivity
- Boolean subtypes
(4) Logic: Aristotelian relations versus duality relations
- Aristotelian squares and Duality squares
- Conceptual independence of Aristotelian \& Duality relations
- Duality relations from square to cube

Summary Part II
(1) Introduction
(2) Logic: opposition relations versus implication relations

- The Opposition and Implication Geometries
- Informativity
- Unconnectedness
(5) Logic: logic-sensitivity and Boolean subtypes
- Logic-sensitivity
- Boolean subtypes
(4) Logic: Aristotelian relations versus duality relations
- Aristotelian squares and Duality squares
- Conceptual independence of Aristotelian \& Duality relations
- Duality relations from square to cube

Duality relations: group theoretic analysis of duality square

The functions ID, ENEG, INEG and DUAL jointly form a group that is isomorphic to the Klein four group \mathbf{V}_{4}. Its Cayley table looks as follows:

\circ	ID	ENEG	INEG	DUAL
ID	ID	ENEG	INEG	DUAL
ENEG	ENEG	ID	DUAL	INEG
INEG	INEG	DUAL	ID	ENEG
DUAL	DUAL	INEG	ENEG	ID

\mathbf{V}_{4} is isomorphic to the direct product of \mathbb{Z}_{2} with itself, i.e. $\mathbf{V}_{4} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. The Cayley table for $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ looks as follows:

\circ	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$(0,0)$	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$(1,0)$	$(1,0)$	$(0,0)$	$(1,1)$	$(0,1)$
$(0,1)$	$(0,1)$	$(1,1)$	$(0,0)$	$(1,0)$
$(1,1)$	$(1,1)$	$(0,1)$	$(1,0)$	$(0,0)$

Duality relations: from duality square to duality cube

generalisation

- from duality square to duality cube
- from 2 negation positions to 3 negation positions
- from $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ to $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$

Generalized Post-duality

- with propositional connectives
- in the Keynes-Johnson octagon with subject negation

(1) Introduction
(2) Logic: opposition relations versus implication relations
- The Opposition and Implication Geometries
- Informativity
- Unconnectedness
(5) Logic: logic-sensitivity and Boolean subtypes
- Logic-sensitivity
- Boolean subtypes
(4) Logic: Aristotelian relations versus duality relations
- Aristotelian squares and Duality squares
- Conceptual independence of Aristotelian \& Duality relations
- Duality relations from square to cube
(5) Summary Part II

Introduction to Logical Geometry - H. Smessaert \& L. Demey
(1) Introduction
(2) Logic: opposition relations versus implication relations

- The Opposition and Implication Geometries
- Informativity
- Unconnectedness
(3) Logic: logic-sensitivity and Boolean subtypes
- Logic-sensitivity
- Boolean subtypes
(4) Logic: Aristotelian relations versus duality relations
- Aristotelian squares and Duality squares
- Conceptual independence of Aristotelian \& Duality relations
- Duality relations from square to cube
(5) Summary Part II

Thank you!

More info: www.logicalgeometry.org

