KU LEUVEN

Aristotelian Diagrams
for Multi-Operator Formulas in Avicenna and Buridan

Hans Smessaert \& Lorenz Demey

CLMPS 2015, Helsinki

- Buridan's Aristotelian octagons: relatively well-known, actual diagrams
- logical goals:
- systematically study some natural extensions of Buridan's octagon
- compare them in terms of their logical complexity (bitstring length)
- historical goals:
- show that although he did not draw the actual diagram, Buridan had the logical means available to construct at least one of these extensions (historical scholarship Buridan: S. Read, G. Hughes, S. Johnston, J. Campos Benítez)
- establish the historical priority of Al-Farabi and Avicenna with respect to Buridan's octagon and at least two of its extensions (historical scholarship Avicenna: S. Chatti, W. Hodges)
- talk based on joint research with Saloua Chatti (Université de Tunis) \& Fabien Schang (HSE Moscow)

Structure of the talk

(1) Some Preliminaries from Logical Geometry
(2) Buridan's modal octagon $=$ square \times square
(3) First extension: dodecagon $=$ square \times hexagon (Buridan/Avicenna)
(4) Second extension: dodecagon $=$ hexagon \times square (Avicenna)
(5) Conclusion

Structure of the talk

(1) Some Preliminaries from Logical Geometry

(3) First extension: dodecagon $=$ square \times hexagon (Buridan/Avicenna)
(4) Second extension: dodecagon $=$ hexagon \times square (Avicenna)

- an Aristotelian diagram visualizes some formulas and the Aristotelian relations holding between them
- definition of the Aristotelian relations: two propositions are
contradictory iff they cannot be true together and they cannot be false together,
contrary iff they cannot be true together but they can be false together,
subcontrary iff they can be true together but they cannot be false together,
in subalternation iff the first proposition entails the second but the second doesn't entail the first

Some Aristotelian squares

Diagrams for Multi-Operator Formulas - H. Smessaert \& L. Demey

- already during the Middle Ages, philosophers used Aristotelian diagrams larger than the classical square to visualize their logical theories
- e.g. John Buridan (ca. 1295-1358): several octagons (see later)
- e.g. William of Sherwood (ca. 1200-1272), Introductiones in Logicam \Rightarrow integrating singular propositions into the classical square

Boolean closure of an Aristotelian diagram

- the smallest Aristotelian diagram that contains all contingent Boolean combinations of formulas from the original diagram
- the Boolean closure of a classical square is a Jacoby-Sesmat-Blanché hexagon (6 formulas)

- the Boolean closure of a Sherwood-Czezowski hexagon is a (3D) rhombic dodecahedron (14 formulas)
- every formula in (the Boolean closure of) an Aristotelian diagram can be represented by means of a bitstring $=$ sequence of bits $(0 / 1)$
- bit-positions in a bitstring of length n correspond to 'anchor formulas' $\alpha_{1}, \ldots, \alpha_{n}$ (obtainable from the diagram) which jointly yield a partition of logical space
- every formula in the diagram is equivalent to a disjunction of these anchor formulas (disjunctive normal form)
- bitstrings keep track which anchor formulas occur in the disjunction and which ones do not
- bitstrings of length $n \Leftrightarrow$ size of Boolean closure is $2^{n}-2$
- disregard non-contingencies (tautology/contradiction, top/bottom)
- bitstrings of length $3 \Leftrightarrow$ Boolean closure is $2^{3}-2=8-2=6$ formulas
- bitstrings of length $4 \Leftrightarrow$ Boolean closure is $2^{4}-2=16-2=14$ formulas

$$
\begin{aligned}
& \left|\begin{array}{c|c|c}
\alpha_{1} & \alpha_{2} & \alpha_{3} \\
\square p & \diamond p \wedge \diamond \neg p & \square \neg p \\
1 / 0 & 1 / 0 & 1 / 0
\end{array}\right| \\
& \begin{array}{rr}
\square p=\alpha_{1} & =100 \\
\square \neg p=\alpha_{3} & =001
\end{array} \\
& \diamond p \equiv \square p \vee(\diamond p \wedge \diamond \neg p) \quad=\alpha_{1} \vee \alpha_{2}=110 \\
& \diamond \neg p \equiv(\diamond p \wedge \diamond \neg p) \vee \square \neg p \quad=\alpha_{2} \vee \alpha_{3}=011
\end{aligned}
$$

$$
\begin{array}{|c|c|c|cc}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \square p=\alpha_{1} & =100 \\
\square p & \diamond p \wedge \diamond \neg p & \square \neg p & \square \neg p=\alpha_{3} & =001 \\
1 / 0 & 1 / 0 & 1 / 0 & &
\end{array}
$$

$$
\diamond p \equiv \square p \vee(\diamond p \wedge \diamond \neg p) \quad=\alpha_{1} \vee \alpha_{2}=110
$$

$$
\diamond \neg p \equiv(\diamond p \wedge \diamond \neg p) \vee \square \neg p=\alpha_{2} \vee \alpha_{3}=011
$$

$$
101
$$

Diagrams for Multi-Operator Formulas - H. Smessaert \& L. Demey
(2) Buridan's modal octagon $=$ square \times square
(3) First extension: dodecagon $=$ square \times hexagon (Buridan/Avicenna)
(4) Second extension: dodecagon $=$ hexagon \times square (Avicenna)

- John Buridan (ca. 1295-1358)
- Summulae de Dialectica (late 1330s, revisions into the 1350s)
- Vatican manuscript Pal.Lat. 994 contains several Aristotelian diagrams:
- Aristotelian square for the usual categorical propositions (A,I,E,O) (e.g. "every human is mortal")
- Aristotelian octagon for non-normal propositions (e.g. "every human some animal is not") (cf. regimentation of Latin)
- Aristotelian octagon for propositions with oblique terms (e.g. "every donkey of every human is running")
- Aristotelian octagon for modal propositions (e.g. "every human is necessarily mortal")

$$
\begin{aligned}
\text { square } & \Rightarrow \text { single operator } \\
\text { octagons } & \Rightarrow \text { combined operators }
\end{aligned}
$$

Diagrams for Multi-Operator Formulas - H. Smessaert \& L. Demey

- Buridan's octagon contains the following 8 formulas:
(1) all A are necessarily B
(2) all A are possibly B
(3) some A are necessarily B
(9) some A are possibly B
(6) all A are necessarily not B
(6) all A are possibly not B
(O) some A are nessarily not B
(3) some A are possibly not B

$\forall x(\diamond A x \rightarrow \square B x)$	$\forall \square$
$\forall x(\diamond A x \rightarrow \diamond B x)$	$\forall \diamond$
$\exists x(\diamond A x \wedge \square B x)$	$\exists \square$
$\exists x(\diamond A x \wedge \diamond B x)$	$\exists \diamond$
$\forall x(\diamond A x \rightarrow \square \neg B x)$	$\forall \square \neg$
$\forall x(\diamond A x \rightarrow \diamond \neg B x)$	$\forall \diamond \neg$
$\exists x(\diamond A x \wedge \square \neg B x)$	$\exists \square \neg$
$\exists x(\diamond A x \wedge \diamond \neg B x)$	$\exists \diamond \neg$

- note: de re modality, ampliation of the subject in modal formulas
- historical precursor: Al-Farabi (ca. 873-950)
- S. Chatti, 2015, Al-Farabi on Modal Oppositions
- identified the 8 formulas of Buridan's octagon
- identified only a few of the Aristotelian relations of the octagon (but all relations are deducible from the ones identified by Al-Farabi)

Buridan's and Al-Farabi's modal octagon

- unlike Buridan, Al-Farabi does not seem to have visualized his logical theorizing by means of an actual diagram
- unlike Buridan, Al-Farabi was not explicit about the issue of ampliation

α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}
$\forall \square$	$\forall \diamond \wedge \exists \square \wedge \exists \diamond \neg$	$\forall \diamond \wedge \forall \diamond \neg$	$\exists \square \wedge \exists \square \neg$	$\forall \diamond \neg \wedge \exists \square \neg \wedge \exists \diamond$	$\forall \square \neg$
$1 / 0$	$1 / 0$	$1 / 0$	$1 / 0$	$1 / 0$	$1 / 0$

- classical square (representable by bitstrings of length 3) \Rightarrow natural extension: JSB hexagon, i.e. its Boolean closure $\left(6=2^{3}-2\right)$
- Buridan's modal octagon (representable by bitstrings of length 6) \Rightarrow its Boolean closure has $2^{6}-2=62$ formulas \Rightarrow too large! \Rightarrow other, more 'reasonable' extensions of the octagon?
- key idea:

Buridan's octagon for quantified modal logic can be seen as arising out of the interaction of a quantifier square and a modality square instead of taking the Boolean closure of the entire octagon, we can take the Boolean closure of its 'component squares'
square \times square $\Rightarrow 4 \times 4=16$ pairwise equivalent formulas:

Diagrams for Multi-Operator Formulas - H. Smessaert \& L. Demey
square \times square $\Rightarrow 4 \times 4=16$ pairwise equivalent formulas:

Structure of the talk
 (1) Some Preliminaries from Logical Geometry

(2) Buridan's modal octagon $=$ square \times square
(3) First extension: dodecagon $=$ square \times hexagon (Buridan/Avicenna)
(4) Second extension: dodecagon $=$ hexagon \times square (Avicenna)

- Buridan octagon $=$ quantifier square \times modality square
- Boolean closure of either/both components \Rightarrow three possibilities:
- quantifier square \times modality hexagon
- quantifier hexagon \times modality square
- quantifier hexagon \times modality hexagon

	\square	$\square \neg$	\diamond	$\diamond \neg$	$\square \vee \square \neg$	$\diamond \wedge \diamond \neg$
\forall	$\forall \square$	$\forall \square \neg$	$\forall \diamond$	$\forall \diamond \neg$	$\forall(\square \vee \square \neg)$	$\forall(\diamond \wedge \diamond \neg)$
$\forall \neg$	$\forall \neg \square$	$\forall \neg \square \neg$	$\forall \neg \diamond$	$\forall \neg \diamond \neg$	$\forall \neg(\square \vee \square \neg)$	$\forall \neg(\diamond \wedge \diamond \neg)$
\exists	$\exists \square$	$\exists \square \neg$	$\exists \diamond$	$\exists \diamond \neg$	$\exists(\square \vee \square \neg)$	$\exists(\diamond \wedge \diamond \neg)$
$\exists \neg$	$\exists \neg \square$	$\exists \neg \square \neg$	$\exists \neg \diamond$	$\exists \neg \diamond \neg$	$\exists \neg(\square \vee \square \neg)$	$\exists \neg(\diamond \wedge \diamond \neg)$

- note: $\forall(\square \vee \square \neg)$ should be read as: $\forall x(\diamond A x \rightarrow(\square B x \vee \square \neg B x))$
- 8 new formulas, but again pairwise equivalent:
- $\forall \neg(\square \vee \square \neg) \equiv \forall(\diamond \wedge \diamond \neg)$
- $\forall \neg(\diamond \wedge \diamond \neg) \equiv \forall(\square \vee \square \neg)$

$$
\begin{aligned}
& \exists \neg(\square \vee \square \neg) \equiv \exists(\diamond \wedge \diamond \neg) \\
& \exists \neg(\diamond \wedge \diamond \neg) \equiv \exists(\square \vee \square \neg)
\end{aligned}
$$

	\square	$\square \neg$	\diamond	$\diamond \neg$	$\square \vee \square \neg$	$\diamond \wedge \diamond \neg$
\forall	$\forall \square$	$\forall \square \neg$	$\forall \diamond$	$\forall \diamond \neg$	$\forall(\square \vee \square \neg)$	$\forall(\diamond \wedge \diamond \neg)$
$\forall \neg$	$\forall \neg \square$	$\forall \neg \square \neg$	$\forall \neg \diamond$	$\forall \neg \diamond \neg$	$\forall \neg(\square \vee \square \neg)$	$\forall \neg(\diamond \wedge \diamond \neg)$
\exists	$\exists \square$	$\exists \square \neg$	$\exists \diamond$	$\exists \diamond \neg$	$\exists(\square \vee \square \neg)$	$\exists(\diamond \wedge \diamond \neg)$
$\exists \neg$	$\exists \neg \square$	$\exists \neg \square \neg$	$\exists \neg \diamond$	$\exists \neg \diamond \neg$	$\exists \neg(\square \vee \square \neg)$	$\exists \neg(\diamond \wedge \diamond \neg)$

- note: $\forall(\square \vee \square \neg)$ should be read as: $\forall x(\diamond A x \rightarrow(\square B x \vee \square \neg B x))$
- 8 new formulas, but again pairwise equivalent:
- $\forall \neg(\square \vee \square \neg) \equiv \forall(\diamond \wedge \diamond \neg)$

$$
\begin{aligned}
& \exists \neg(\square \vee \square \neg) \equiv \exists(\diamond \wedge \diamond \neg) \\
& \exists \neg(\diamond \wedge \diamond \neg) \equiv \exists(\square \vee \square \neg)
\end{aligned}
$$

- up to logical equivalence, we arrive at $\frac{4 \times 6}{2}=12$ formulas
\Rightarrow Aristotelian dodecagon that extends Buridan's octagon
- more reasonable than the octagon's full Boolean closure $(8<12 \ll 62)$
- the 'dodecagon' in Buridan (ca. 1295-1358):
- S. Read, 2015, John Buridan on Non-Contingency Syllogisms
- Buridan identified the 12 formulas of the dodecagon
- Buridan identified the Aristotelian relations of the dodecagon
- the 'dodecagon' in Avicenna (ca. 980-1037):
- S. Chatti, 2015, Les Carrés d'Avicenne
- Avicenna identified the 12 formulas of the dodecagon
- Avicenna identified the Aristotelian relations of the dodecagon

Buridan: dodecagon $=$ quantifier square \times modal hexagon
Avicenna: dodecagon $=$ quantifier square \times temporal hexagon

formula	Buridan	Avicenna
$\exists \square$	some A are necessarily B	some A are always B
$\forall \diamond$	all A are possibly B	all A are sometimes B

- the first extension does not fit within the octagon's Boolean closure
- Boolean closure of the octagon: $2^{6}-2=62$ formulas
- Boolean closure of the first extension:
$2^{7}-2=126$ formulas
- quantifier does not distribute over modality in $\alpha_{4 a} / \alpha_{4 b}$

Diagrams for Multi-Operator Formulas - H. Smessaert \& L. Demey
KULEUVEN

Structure of the talk

(4) Second extension: dodecagon $=$ hexagon \times square (Avicenna)

- Buridan: octagon $=$ quantifier square \times modality square
- first extension: take Boolean closure of the second square \Rightarrow dodecagon $=$ quantifier square \times modality hexagon
- second extension: take Boolean closure of the first square \Rightarrow dodecagon $=$ modality hexagon \times quantifier square
- also switch the roles of quantifiers and modalities
- from de re modalities to de dicto modalities

	\forall	$\forall \neg$	\exists	$\exists \neg$
\square	$\square \forall$	$\square \forall \neg$	$\square \exists$	$\square \exists \neg$
$\square \neg$	$\square \neg \forall$	$\square \neg \neg \neg$	$\square \neg \exists$	$\square \neg \exists \neg$
\diamond	$\diamond \forall$	$\diamond \forall \neg$	$\diamond \exists$	$\diamond \exists \neg$
$\diamond \neg$	$\diamond \neg \forall$	$\diamond \neg \forall \neg$	$\diamond \neg \exists$	$\diamond \neg \exists \neg$
$\square \vee \square \neg$	$(\square \vee \square \neg) \forall$	$(\square \vee \square \neg) \forall \neg$	$(\square \vee \square \neg) \exists$	$(\square \vee \square \neg) \exists \neg$
$\diamond \wedge \diamond \neg$	$(\diamond \wedge \diamond \neg) \forall$	$(\diamond \wedge \diamond \neg) \forall \neg$	$(\diamond \wedge \diamond \neg) \exists$	$(\diamond \wedge \diamond \neg) \exists \neg$

- note: $(\square \vee \square \neg) \forall$ should be read as: $\square \forall \vee \square \neg \forall(\equiv \square \forall \vee \square \exists \neg)$
- pairwise equivalent: $\frac{6 \times 4}{2}=12$ formulas \Rightarrow second dodecagon extension

	\forall	$\forall \neg$	\exists	$\exists \neg$
\square	$\square \forall$	$\square \forall \neg$	$\square \exists$	$\square \exists \neg$
$\square \neg$	$\square \neg \forall$	$\square \neg \neg \neg$	$\square \neg \exists$	$\square \neg \exists \neg$
\diamond	$\diamond \forall$	$\diamond \forall \neg$	$\diamond \exists$	$\diamond \exists \neg$
$\diamond \neg$	$\diamond \neg \forall$	$\diamond \neg \forall \neg$	$\diamond \neg \exists$	$\diamond \neg \exists \neg$
$\square \vee \square \neg$	$(\square \vee \square \neg) \forall$	$(\square \vee \square \neg) \forall \neg$	$(\square \vee \square \neg) \exists$	$(\square \vee \square \neg) \exists \neg$
$\diamond \wedge \diamond \neg$	$(\diamond \wedge \diamond \neg) \forall$	$(\diamond \wedge \diamond \neg) \forall \neg$	$(\diamond \wedge \diamond \neg) \exists$	$(\diamond \wedge \diamond \neg) \exists \neg$

- note: $(\square \vee \square \neg) \forall$ should be read as: $\square \forall \vee \square \neg \forall(\equiv \square \forall \vee \square \exists \neg)$
- pairwise equivalent: $\frac{6 \times 4}{2}=12$ formulas \Rightarrow second dodecagon extension
- the 'dodecagon' in Avicenna (ca. 980-1037):
- S. Chatti, 2014, Avicenna on Possibility and Necessity
- Avicenna identified the 12 formulas of this second dodecagon
- Avicenna identified the Aristotelian relations holding between them

octagon (square \times square) \Rightarrow bitstrings of length 6					
α_{1} $\forall \square$ $1 / 0$	$\begin{gathered} \alpha_{2} \\ \forall \diamond \wedge \exists \square \wedge \exists \diamond \neg \\ 1 / 0 \end{gathered}$	$\begin{gathered} \alpha_{3} \\ \forall \diamond \wedge \forall \diamond \neg \\ 1 / 0 \end{gathered}$	$\begin{gathered} \alpha_{4} \\ \exists \square \wedge \exists \square \neg \\ 1 / 0 \end{gathered}$	$\begin{gathered} \alpha_{5} \\ \forall \diamond \neg \wedge \exists \square \neg \wedge \exists \diamond \\ 1 / 0 \end{gathered}$	$\begin{gathered} \alpha_{6} \\ \forall \square \neg \\ 1 / 0 \end{gathered}$
dodecagon (hexagon \times square) \Rightarrow bitstrings of length 6					
α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}
$\square \forall$	$\square \exists \wedge \diamond \forall \wedge \diamond \exists \neg$	$\square \exists \wedge \square \exists \neg$	$\diamond \forall \wedge \Delta \forall \neg$	$\square \exists \neg \wedge \diamond \forall \neg \wedge \diamond \exists$	$\square \forall \neg$
1/0	1/0	1/0	1/0	1/0	1/0

- anchor formulas are the same (except that quantifiers and modalities are switched)
- second extension of Buridan's octagon
remains within that octagon's Boolean closure

Diagrams for Multi-Operator Formulas - H. Smessaert \& L. Demey

Structure of the talk

(1) Some Preliminaries from Logical Geometry
(2) Buridan's modal octagon $=$ square \times square
(3) First extension: dodecagon $=$ square \times hexagon (Buridan/Avicenna)
(4) Second extension: dodecagon $=$ hexagon \times square (Avicenna)
(5) Conclusion

- natural extension from a technical (and historical?) perspective:
- take Boolean closure of both square components
- so we get hexagon \times hexagon $\Rightarrow \frac{6 \times 6}{2}=18$ formulas
- e.g. "some but not all men are contingently philosophers"
- overview:

Buridan	8-gon	quantifier square	\times	modality square	6
"Al-Farabi"	8 -gon	quantifier square	\times	modality square	6
"Buridan"	12-gon	quantifier square	\times	modality hexagon	7
"Avicenna"	12 -gon	quantifier square	\times	temporal hexagon	7
"Avicenna"	12-gon	modality hexagon	\times	quantifier square	6
???	18 -gon	quantifier hexagon	\times	modal hexagon	7

Thank you!

More info: www.logicalgeometry.org

