KU LEUVEN

Logical and Geometrical
Complementarities between Aristotelian Diagrams

Hans Smessaert and Lorenz Demey

Diagrams 2014, Melbourne

Introduction: Diagrams and Subdiagrams

central idea: subdiagrams / diagram embedding / diagram nesting

- smaller diagrams occur inside bigger diagrams
- Euler diagrams (Fish \& Flower 2008), Venn diagrams (Flower, Stapelton \& Rogers 2013), spider diagrams (Urbas, Jamnik, Stapelton \& Flower 2012) or algebra diagrams (Cheng 2012)
- visual nesting and recursion (Engelhardt 2006): "any object may contain a set of (sub-)objects within the space that it occupies. When this principle is repeated recursively, the spatial arrangement of (sub-)objects is, at each level, determined by the specific nature of the containing space at that level."
- set of transitively nested substates of a composite state (Jin, Esser \& Janneck 2002): "in every UML statechart there is an inherent composite state called the top state which covers all the (pseudo) states and is the container of the states."

Introduction: Diagrams and Subdiagrams

central diagram: rhombic dodecahedron (RDH)

- Smessaert (2009/2012), Demey (2012)
- 3D representation for the visualisation of the Aristotelian relations between 14 contingent formulas.
central aims of talk
- to develop strategies for systematically charting the internal structure of the RDH
- to study various complementarities between Aristotelian diagrams inside the RDH
- to provide a more unified account of a whole range of diagrams which have so far mostly been treated independently of one another in the literature
(1) Introduction
(2) Aristotelian Relations in the Rhombic Dodecahedron
(3) Aristotelian Squares of Opposition
(4) Aristotelian Hexagons of Opposition
(5) Aristotelian Octagons of Opposition
(6) Complementarities in the Rhombic Dodecahedron
(7) Conclusion

Complementarities in Aristotelian Diagrams - H. Smessaert \& L. Demey
(2) Aristotelian Relations in the Rhombic Dodecahedron
(3) Aristotelian Squares of Opposition

44 Aristotelian Hexagons of Opposition
(5) Aristotelian Octagons of Opposition
(6) Complementarities in the Rhombic Dodecahedron

Aristotelian Relations

- Informally, two formulas are:
contradictory iff they cannot be true together and cannot be false together contrary iff they cannot be true together, but can be false together subcontrary iff they can be true together, but cannot be false together in subalternation iff the first logically entails the second, but not vice versa
- Formally (relative to a logical system S), two formulas φ, ψ are

contradictory	iff	$\mathrm{S} \models \neg(\varphi \wedge \psi)$	and	$\mathrm{S} \vDash \neg \neg(\neg \varphi \wedge \neg \psi)$
contrary	iff	$\mathrm{S} \models \neg(\varphi \wedge \psi)$	and	$\mathrm{S} \not \models \neg(\neg \varphi \wedge \neg \psi)$
subcontrary	iff	$\mathrm{S} \not \models \neg(\varphi \wedge \psi)$	and	$\mathrm{S} \vDash \neg(\neg \varphi \wedge \neg \psi)$
in subalternation	iff	$\mathrm{S} \vDash \varphi \rightarrow \psi$	and	$\mathrm{S} \not \models \psi \rightarrow \varphi$

- Formulas which do not stand in any Aristotelian relation are said to be unconnected or logically independent.

Pairs of Contradictories

Partitioning the formulas from Classical Propositional Logic with two propositional variables p and q into Pairs of Contradictories (PCDs)

- 4 PCDs of type C ('cube')

$$
\begin{array}{llrlrlr}
\text { a. } & (p \wedge q) & \text { b. } & \neg(p \rightarrow q) & \text { c. } & \neg(p \leftarrow q) & \text { d. } \\
\text { a'. }^{\prime} & \neg(p \wedge q) & \text { b'. } & (p \rightarrow q \vee q) & \text { c }^{\prime} . & (p \leftarrow q) & \text { d }^{\prime} . \\
(p \vee q)
\end{array}
$$

- 3 PCDs of type \mathbf{O} ('octahedron') +1 non-contingent PCD

$$
\begin{array}{rrrrrrr}
\text { e. } & p & \text { f. } & q & \text { g. } & (p \leftrightarrow q) & \text { h. } p \wedge \neg p \\
\text { ér }^{\prime} & \neg p & \text { f. }^{\prime} . & \neg q & \text { g'. } & \neg(p \leftrightarrow q) & \text { h'. } p \vee \neg p
\end{array}
$$

- Distinction between levels:

$$
\begin{array}{cccl}
(\mathrm{a}-\mathrm{d}) & =\text { Level 1 } & \Rightarrow \text { pairwise contraries } \\
\left(\mathrm{a}^{\prime}-\mathrm{d}^{\prime}\right) & =\text { Level 3 } & \Rightarrow \text { pairwise subcontraries } \\
(\mathrm{e}-\mathrm{g})+\left(\mathrm{e}^{\prime}-\mathrm{g}^{\prime}\right) & =\text { Level 2 } & \Rightarrow \text { pairwise unconnected } \\
\left(\mathrm{h}-\mathrm{h}^{\prime}\right) & =\text { Level 0/4 } & \Rightarrow \text { disregarded! }
\end{array}
$$

- 14 formulas/7 PCDs \Rightarrow 3D visualisation
cube + octahedron $=$ cuboctahedron $\xrightarrow{\text { dual }} \quad$ rhombic dodecahedron

Archimedean
14 faces
12 vertices

Catalan
12 faces
14 vertices

Complementarities in Aristotelian Diagrams - H. Smessaert \& L. Demey

KU LEUVEN

Pairs of Contradictories in the Rhombic Dodecahedron

central symmetry cube | cube | $=4$ PCDs of type C (L1-L3) |
| ---: | :--- |
| octahedron | $=3$ PCDs of type O (L2-L2) |

Overview

(2) Aristotelian Relations in the Rhombic Dodecahedron
(3) Aristotelian Squares of Opposition
(4) Aristotelian Hexagons of Opposition
(5) Aristotelian Octagons of Opposition
(6) Complementarities in the Rhombic Dodecahedron

classical
balanced
$\mathrm{C}_{2} \mathrm{O}_{0}$
L1-L3 + L1-L3
classical
unbalanced
$\mathrm{C}_{1} \mathrm{O}_{1}$
L1-L3 + L2-L2
subalternation
-_unconnected

degenerate balanced
$\mathrm{C}_{0} \mathrm{O}_{2}$
L2-L2 + L2-L2
(2) Aristotelian Relations in the Rhombic Dodecahedron
(3) Aristotelian Squares of Opposition
(4) Aristotelian Hexagons of Opposition
(5) Aristotelian Octagons of Opposition
(6) Complementarities in the Rhombic Dodecahedron

(b)

Jacoby-Sesmat-Blanché (JSB)
$\mathrm{C}_{2} \mathrm{O}_{1} a$
L1-L3/L1-L3+L2-L2
triangles of
(sub)contrariety

Sherwood-Czezowski
(SC)
$\mathrm{C}_{2} \mathrm{O}_{1}$ b
L1-L3/L1-L3+L2-L2 triangles of subalternation

Unconnected-4
(U4)
$\mathrm{C}_{1} \mathrm{O}_{2}$
L2-L2/L2-L2+L1-L3
no triangles
\rightarrow V-shapes
(cfr. Smessaert, Diagrams 2012)

Square subdiagrams in the Aristotelian Hexagons

squares in Jacoby-Sesmat-Blanché hexagon (JSB)
(a)

(b)

(c)

squares in Sherwood-Czezowski hexagon (SC)
Complementarities in Aristotelian Diagrams - H. Smessaert \& L. Demey

Overview

(2) Aristotelian Relations in the Rhombic Dodecahedron
(3) Aristotelian Squares of Opposition
(4) Aristotelian Hexagons of Opposition
(5) Aristotelian Octagons of Opposition
(6) Complementarities in the Rhombic Dodecahedron
(7) Conclusion

Complementarities in Aristotelian Diagrams - H. Smessaert \& L. Demey
(a)

Béziau octagon

$$
\mathrm{C}_{2} \mathrm{O}_{2} b
$$

2 triangles of (sub)contrariety
2 triangles of subalternation
(b)

Buridan octagon

$$
\mathrm{C}_{2} \mathrm{O}_{2} a
$$

0 triangles of (sub)contrariety
4 triangles of subalternation

Complementarities in Aristotelian Diagrams - H. Smessaert \& L. Demey

Overview

(2) Aristotelian Relations in the Rhombic Dodecahedron
(3) Aristotelian Squares of Opposition
(4) Aristotelian Hexagons of Opposition
(5) Aristotelian Octagons of Opposition
(6) Complementarities in the Rhombic Dodecahedron

Complementarities in the Rhombic Dodecahedron

Fundamental complementarity: $C_{k} O_{\ell}+C_{4-k} O_{3-\ell}=C_{4} O_{3}=R D H$

$C_{4} O_{0}$	+	$C_{0} O_{3}$	$=$	$C_{4} O_{3}$
cube	+	octahedron	$=$	RDH

$$
\begin{array}{ccc}
\mathrm{C}_{2} \mathrm{O}_{1} a & + & \mathrm{C}_{2} \mathrm{O}_{2} a \\
\text { Jacoby-Sesmat-Blanché hexagon } & + & \text { Buridan octagon } \\
& & (2 \mathrm{SC} \text { hexagons })
\end{array}
$$

Complementarities in the Rhombic Dodecahedron

$\mathrm{C}_{2} \mathrm{O}_{1} \mathrm{a}+$

$$
\mathrm{C}_{2} \mathrm{O}_{2} a
$$

Buridan
octagon

rhombicube

$$
=\quad C_{4} O_{3}
$$

$$
\begin{array}{cc}
& \text { rhombic } \\
= & \text { dodecahedron }
\end{array}
$$

$=\quad$ RDH

$\mathrm{C}_{2} \mathrm{O}_{1} b$	+	$\mathrm{C}_{2} \mathrm{O}_{2} b$
Sherwood-Czezowski hexagon	+	Béziau octagon
		$(1 \mathrm{JSB}+1 \mathrm{SC}$ hexagon $)$

$$
C_{2} O_{1} b
$$

Sherwood-Czezowski hexagon

squeezed +

$$
+
$$

$$
C_{2} O_{2} b
$$ octahedron

squeezed hexagonal bipyramid

$$
=\quad C_{4} O_{3}
$$

$=\quad$ RDH

Overview

develop strategies for systematically charting the internal structure of RDH

- distinguish families of squares in terms of 2 embedded PCDs
- distinguish families of hexagons in terms of 3 embedded squares
- distinguish families of octagons in terms of 4 embedded hexagons
study various complementarities between Aristotelian diagrams inside RDH
- difference in visual appeal \approx geometric difference (reflection symmetries)
- SC hexagons naturally come in pairs (Buridan octagon/rhombicube)
- JSB-Buridan complementarity respects this pairing
- SC-Béziau complementarity cuts across this pairing provide a more unified account of a whole range of diagrams which have so far mostly been treated independently of one another in the literature \Rightarrow exhaustive typology of RDH subdiagrams (combinatorial analysis)

Thank you!

More info: www.logicalgeometry.org

