KU LEUVEN

One-sided versus two-sided readings of many and few

Hans Smessaert and Lorenz Demey

LNAT3, February 5-6, 2015, Brussels

Introduction

Aims of this talk:

- discuss Béziau's (unpublished LNAT1) proposal to transpose his results on the logical geometry of the modal logic S 5 to that of the subjective quantifiers many and few
- propose an alternative analysis of many and few, which seems to fare equally well from a strictly logical perspective, but which we argue to be more in line with certain linguistic desiderata
- compare the two analyses in terms of two scales:
- scale of semantic complexity
- scale of lexical complexity
- compare the two analyses in terms of the types of Aristotelian diagrams they generate
(1) Introduction
(2) One-sided readings of "many" and "few"
(3) Two-sided readings of "many" and "few"
(4) Semantic versus lexical complexity
(5) Aristotelian diagrams for "many" and "few"

6 Conclusion

One-sided versus two-sided many and few - H. Smessaert \& L. Demey

Overview

(1) Introduction

(2) One-sided readings of "many" and "few"
(3) Two-sided readings of "many" and "few"
(4) Semantic versus lexical complexity
(5) Aristotelian diagrams for "many" and "few"
(6) Conclusion

One-sided versus two-sided many and few - H. Smessaert \& L. Demey

S5-formula	bitstring	FOL-quantifier
$\square p$	100	all
$\neg \square p$	011	not all
$\neg \diamond p$	001	no
$\diamond p$	110	at least one
$\square p \vee \neg \diamond p$	101	no or all
$\neg \square p \wedge \diamond p$	010	some

some \equiv at least one but not all $010=110 \wedge 011$ two-sided at least one \equiv some or all $\quad 110=010 \vee 100$ one-sided

Béziau's one-sided readings of "many" and "few"

S5-formula	bitstring	FOL-quantifier
$\square p$	1000	all
$\neg \square p$	0111	not all
$\neg \diamond p$	0001	no
$\diamond p$	1110	at least one
$\square p \vee \neg \diamond p$	1001	no or all
$\neg \square p \wedge \diamond p$	0110	some
p	1100	many $_{1}$
$\neg p$	0011	few $_{1}$

Béziau's one-sided readings of "many" and "few"

level	S5-formula	bitstring	subjective quantifier
L2	p	1100	many $_{1}$
	$\neg p$	0011	few $_{1}$
L1	$p \wedge \neg \square p$	0100	many $_{1}$ but not all
	$\neg p \wedge \diamond p$	0010	at least one but few

The conjunctions many but not all and at least one but few create the $^{\text {L1 }}$ elements 0100 and 0010 by excluding the extreme values of the tripartition, i.e. all (1000) and no (0001), respectively.

Problems with Béziau's one-sided readings

- entailments in S 5
- from L1 'necessity' (1000) to L2 'actual truth' (1100)
- from L1 'impossibility' (0001) to L2 'actual falsehood' (0011)
- analogous entailments for subjective quantifiers
- from L1 all (1000) to L2 many (1100)
- from L1 no (0001) to L2 few ${ }_{1}$ (0011)
- suppose that John has read all three books in the universe of discourse
- John has read all books is obviously true
- John has read many books is very likely to be considered false ('three books' does not really count as 'many books')
- suppose that John has read none of the books in the univ. of discourse
- John has read no books is obviously true
- John has read few books is much less obvious (conflict with the existential presupposition of few)
- solution: two-sided readings for few and many

Overview

(2) One-sided readings of "many" and "few"
(3) Two-sided readings of "many" and "few"
(4) Semantic versus lexical complexity
(5) Aristotelian diagrams for "many" and "few"
(6) Conclusion

One-sided versus two-sided many and few - H. Smessaert \& L. Demey

many $_{2}=0100=$ two-sided L1 incompatible with all $=1000$
few $_{2}=0010=$ two-sided L1 incompatible with no $=0001$
level 2 disjunctions = lexically complex expressions, cfr. English little or no; Dutch weinig of geen and French peu ou pas many $_{2}$ or all/ many y_{2} if not all few_{2} or no/few fe_{2} if any
$0100 \vee 1000=1100 \equiv$ many $_{1}$
$0010 \vee 0001=0011 \equiv$ few 1
many $_{2}$ or $\mathrm{few}_{2} \quad 0100 \vee 0010=0110 \equiv$ some

level	Béziau's analysis	bitstring	alternative analysis
L2	many $_{1}$	1100	many $_{2}$ if not all
	feww $_{1}$	0011	few $_{2}$ if any
L1	many $_{1}$ but not all	0100	many $_{2}$
	at least one but few	0010	few $_{2}$
L3	all or few	1011	all or (few if any)
	no or many	1101	no or (many ${ }_{2}$ if not all)
L2	all or (at least one but few 1)	1010	all or few
	no or (many but not all)	0101	no or many

(2) One-sided readings of "many" and "few"
(3) Two-sided readings of "many" and "few"
(4) Semantic versus lexical complexity
(5) Aristotelian diagrams for "many" and "few"
(6) Conclusion

One-sided versus two-sided many and few - H. Smessaert \& L. Demey

Semantic vs lexical complexity in the Béziau analysis

no or many ${ }_{1}$ 1101

all or few ${ }_{1}$
1011

- discrepancies between:
- semantic complexity (full line arrows) = entailment L1 > L2 > L3
- lexical complexity (dashed line arrows) = amount of lexical material
- difference in orientation between:
- the lattices for semantic complexity $=$ from top to bottom
- the lattices for lexical complexity $=$ from the outside inwards

Semantic vs lexical complexity in the alternative analysis

- no more discrepancies between:
- semantic complexity (full line arrows) = entailment L1 > L2 > L3
- lexical complexity (dashed line arrows) $=$ amount of lexical material
- parallel orientation of:
- the lattices for semantic complexity = from top to bottom
- the lattices for lexical complexity $=$ from top to bottom

Overview

(5) Aristotelian diagrams for "many" and "few"

- contradiction: 3 diagonals: $2 \times$ L1-L3 and $1 \times$ L2-L2
- contrariety: triangle L1-L2-L1
- subcontrariety: triangle L3-L2-L3
- subalternation: 6 arrows: $2 \times$ L1-L2, $2 \times$ L2-L3 and $2 \times$ L1-L3

- contradiction: $2 \times$ L1-L3 and $2 \times$ L2-L2 $\rightsquigarrow \boldsymbol{m a n y}_{1} /$ few $_{1}$
- contrariety: $1 \times$ L1-L1 and $4 \times$ L1-L2 $\rightsquigarrow \boldsymbol{m a n y}_{2} /$ few $_{2}$
- subcontrariety: $1 \times$ L3-L3 and $4 \times$ L2-L3
- subalternation: 4 transitivity triangles L1-L2-L3
- unconnectedness square: 4 pairs of L2-L2

cube
8 vertices
$4 \times$ L1
$4 \times$ L3

octahedron
6 vertices
$6 \times$ L2

rhombic dodecahedron

$$
\begin{gathered}
14 \text { vertices } \\
\text { *L0 *0000 } \\
\text { *L4 }{ }^{*} 1111 \\
\mathbf{1 4 =} 2^{4}-2=16-2
\end{gathered}
$$

One-sided versus two-sided many and few - H. Smessaert \& L. Demey

Complementarity of JSB hexagon and Buridan rhombicube

strong JSB
hexagon

Buridan
octagon

rhombic dodecahedron

rhombicube

Overview

- discussed Béziau's one-sided analysis of many $/$ few $_{1}$ based on the analogy between the modal logic S5 and the subjective quantifiers.
- proposed an alternative, two-sided analysis of many $_{2} / f_{2} w_{2}$, which more adequately reflects the relations of entailment (all \rightarrow many, and no \rightarrow few) and disjunction (few if any, many if not all).
- compared the two analyses in terms of discrepancies between the scale of semantic complexity and the scale of lexical complexity.
- compared the two analyses in terms of the types of Aristotelian diagrams they generate: identical strong Jacoby-Sesmat-Blanché hexagons but different Buridan octagons/rhombicubes:
- contradiction for many mew $_{1}$
- contrariety for many $_{2} /$ few $_{2}$

Thank you!

More info: www.logicalgeometry.org

H. Smessaert \& L. Demey, 'Béziau's Contributions to the Logical Geometry of Modalities and Quantifiers'. In: A. Koslow \& A. Buchsbaum (eds.), The Road to Universal Logic, 2015, Springer, pp. 475-493.

