

The Unreasonable Effectiveness of Bitstrings in Logical Geometry

Hans Smessaert and Lorenz Demey

The central aim of Logical Geometry is

- to develop an *interdisciplinary framework*
- for the study of geometrical representations
- in the analysis of *logical relations*.

More in particular:

- we analyse the **logical relations** of opposition, implication and duality between expressions in various logical, linguistic and conceptual systems.
- we study abstract **geometrical representations** of these relations as well as their visualisation by means of 2D and 3D diagrams.
- we develop an **interdisciplinary framework** integrating insights from logic, formal semantics, algebra, group theory, lattice theory, computer graphics, cognitive psychology, information visualisation and diagrams design.

Bitstrings in Logical Geometry - H. Smessaert & L. Demey

KU LEL

Bitstrings

- are an extremely powerful tool
- yield both quantitative and qualitative results
- raise interesting new questions

Main aims of the talk:

- provide a unified account of bitstrings in logical geometry
- illustrate their effectiveness on different levels

KU LEU

Bitstrings in Logical Geometry - H. Smessaert & L. Demey

- 2 Bitstrings in Logical Geometry
- 3 Logical Effectiveness
- Oiagrammatic Effectiveness
- 5 Linguistic and Cognitive Effectiveness
 - Onclusion

- 2 Bitstrings in Logical Geometry
 - 3 Logical Effectiveness
 - Diagrammatic Effectiveness
- 5 Linguistic and Cognitive Effectiveness
- 6 Conclusion

Bitstrings are sequences of bits (0/1) that encode (denotations of) formulas

Modal Logic S5	Propositional Logic	bitstrings level 1	bitstrings level 3	Propositional Logic	Modal Logic S5
$\Box p$	$p \wedge q$	1000	0111	$\neg (p \land q)$	$\neg \Box p$
$\neg \Box p \wedge p$	$\neg (p \rightarrow q)$	0100	1011	$p \rightarrow q$	$\Box p \vee \neg p$
$\Diamond p \wedge \neg p$	$\neg (p \leftarrow q)$	0010	1101	$p \leftarrow q$	$\neg \Diamond p \lor p$
$\neg \Diamond p$	$\neg (p \lor q)$	0001	1110	$p \lor q$	$\Diamond p$
				- -	
Modal Logic S5	Propositional Logic	bitstrings level 2/0	bitstrings level 2/4	Propositional Logic	Modal Logic S5
p	p	1100	0011	$\neg p$	$\neg p$
$\Box p \lor (\Diamond p \land \neg p)$	q	1010	0101	$\neg q$	$\neg \Diamond p \lor (\neg \Box p \land p)$
$\Box p \lor \neg \Diamond p$	$p \leftrightarrow q$	1001	0110	$\neg(p \leftrightarrow q)$	$\neg \Box p \land \Diamond p$
$\Box p \land \neg \Box p$	$p \wedge \neg p$	0000	1111	$p \lor \neg p$	$\Box p \lor \neg \Box p$

KU LEUVEN

Bitstrings in Logical Geometry - H. Smessaert & L. Demey

Bitstrings

Bitstrings have been used to encode

- **logical systems**: e.g. classical propositional logic, first-order logic, modal logic and public announcement logic
- lexical fields: e.g. comparative quantification, subjective quantification, color terms and set inclusion relations

Remark:

- we use bitstrings to encode formulas, not relations between formulas
- if a formula φ is encoded by the bitstring b, we write $\beta(\varphi) = b$

KU LEU

Relative to a	Boolean	logical system	S, two	formulas φ, ψ are
contradictory	iff	$S \models \neg(\varphi \land \psi)$	and	$S \models \neg (\neg \varphi \land \neg \psi)$
contrary	iff	$S \models \neg(\varphi \land \psi)$	and	$S \not\models \neg (\neg \varphi \land \neg \psi)$
subcontrary	iff	$S \not\models \neg(\varphi \land \psi)$	and	$S \models \neg (\neg \varphi \land \neg \psi)$
in subalternat	tion iff	$S\models\varphi\rightarrow\psi$	and	$S \not\models \psi \to \varphi$

In terms of bitstrir	ngs,	two bitstrings l	\mathfrak{b}_1 and	b_2 are
contradictory	iff	$b_1 \wedge b_2 = 0000$	and	$b_1 \lor b_2 = 1111$
contrary	iff	$b_1 \wedge b_2 = 0000$	and	$b_1 \lor b_2 \neq 1111$
subcontrary	iff	$b_1 \wedge b_2 \neq 0000$	and	$b_1 \lor b_2 = 1111$
in subalternation	iff	$b_1 \wedge b_2 = b_1$	and	$b_1 \lor b_2 \neq b_1$

- φ and ψ stand in some Aristotelian relation (defined for S) iff $\beta(\varphi)$ and $\beta(\psi)$ stand in that same relation (defined for bitstrings).
- β maps formulas from S to bitstrings, preserving Aristotelian structure (Representation Theorem for finite Boolean algebras)

Bitstrings in Logical Geometry – H. Smessaert & L. Demey

- In most cases, the mapping β assigns a *semantics* to the formulas (>< Pellissier's setting approach).
- Each bit provides an answer to a (binary) meaningful question (analysis of generalized quantifiers as sets of sets).
- In S5 the bit positions encode answers to the following questions:

$\begin{array}{ll} \mathsf{Is} \ \varphi \ \mathsf{true} \ \mathsf{if} \\ p \ \mathsf{is} \ \mathsf{true} \ \mathsf{in} \ \mathsf{all} \ \mathsf{possible} \ \mathsf{worlds}? \\ p \ \mathsf{is} \ \mathsf{true} \ \mathsf{in} \ \mathsf{the} \ \mathsf{actual} \ \mathsf{world} \ \mathsf{but} \ \mathsf{not} \ \mathsf{in} \ \mathsf{all} \ \mathsf{possible} \ \mathsf{worlds}? \\ p \ \mathsf{is} \ \mathsf{true} \ \mathsf{in} \ \mathsf{some} \ \mathsf{possible} \ \mathsf{worlds} \ \mathsf{but} \ \mathsf{not} \ \mathsf{in} \ \mathsf{all} \ \mathsf{possible} \ \mathsf{worlds}? \\ p \ \mathsf{is} \ \mathsf{true} \ \mathsf{in} \ \mathsf{no} \ \mathsf{possible} \ \mathsf{worlds}? \\ p \ \mathsf{is} \ \mathsf{true} \ \mathsf{in} \ \mathsf{no} \ \mathsf{possible} \ \mathsf{worlds}? \\ p \ \mathsf{is} \ \mathsf{true} \ \mathsf{in} \ \mathsf{no} \ \mathsf{possible} \ \mathsf{worlds}? \\ \end{array}$

• Examples:

$$\begin{array}{ll} \beta(\Diamond p) &= 1110 &= \langle \text{ yes, yes, yes, no } \rangle \\ \beta(\Diamond p \land \Diamond \neg p) &= 0110 &= \langle \text{ no, yes, yes, no } \rangle \\ \beta(\Diamond \neg p) &= 0111 &= \langle \text{ no, yes, yes, yes, yes} \rangle \end{array}$$

Bitstrings in Logical Geometry – H. Smessae<u>rt & L. Demey</u>

KU LEUV

- 2 Bitstrings in Logical Geometry
- 3 Logical Effectiveness
 - 4 Diagrammatic Effectiveness
 - 5 Linguistic and Cognitive Effectiveness
 - 6 Conclusion

Bitstrings in Logical Geometry – H. Smessaert & L. Demey

- the set of 4 **Aristotelian** relations is hybrid between two other sets of logical relations that are ordered by information level
- **Opposition** relations: contradiction, contrariety, subcontrariety, and non-contradiction
- Implication relations: bi-implication, left-implication, right-implication, and non-implication

Unconnectedness (logical independence):

- absence of any Aristotelian relation
- combination of least informative Opposition and Implication relations

- Unification: Unconnectedness requires bitstrings of length at least 4
- Theorem: φ and ψ unconnected $\Rightarrow \beta(\varphi)$ and $\beta(\psi)$ have \geq 4 bits

Bitstrings in Logical Geometry – H. Smessae<u>rt & L. Demey</u>

For any bitstring of length n and level i we can use simple combinatorial arguments to calculate the number of

contradictories	#CD	= 1
contraries	#C	$= 2^{n-i} - 1$
subcontraries	#SC	$= 2^i - 1$
non-contradictories	#NCD	$= (2^{n-i} - 1)(2^i - 1)$

- Note that #CD < #C, #SC < #NCD iff 1 < i < n-1
- Recall informativity ordering: CD > C, SC > NCD
- Note that if $i \approx \frac{n}{2}$, then $\#C \approx \#SC$
- Bitstrings in middle levels have similar numbers of contraries and subcontraries; recall informativity ordering: $C \equiv SC$

Bitstrings in Logical Geometry - H. Smessaert & L. Demey

KU LEU

- 2) Bitstrings in Logical Geometry
- 3 Logical Effectiveness
- Oiagrammatic Effectiveness
 - 5 Linguistic and Cognitive Effectiveness
 - 6 Conclusion

- Boolean closure of bitstrings length 4 $\stackrel{2009}{\Longrightarrow}$ rhombic dodecahedron (RDH)
- internal structure of RDH $\stackrel{2013}{\Longrightarrow}$
 - exhaustive typology of Aristotelian diagrams for length 4 bitstrings
 - CO perspective: cube (L1-L3) + octahedron (L2-L2)
- Use bitstrings to study embeddings
 - rhombic dodecahedron $~\sim~~$ bitstrings of length 4
 - strong JSB hexagon $~\sim~~$ bitstrings of length 3
 - compression of bitstrings: length 4 \rightsquigarrow length 3
 - e.g. $b_1 = b_2$: **11**00 \rightsquigarrow **1**00, **00**10 \rightsquigarrow **0**10, **00**11 \rightsquigarrow **0**11
 - $\bullet\,$ 6 strong JSB hexagons in RDH \sim 6 compressions length 4 \rightsquigarrow length 3

KU LEU

•
$$b_2 = b_3$$
, $b_1 = b_2$, $b_3 = b_4$, $b_1 = b_4$, $b_1 = b_3$, $b_2 = b_4$
(1950s) (2003) (2003) (2005*) (2005) (2005)

Bitstrings in Logical Geometry – H. Smessaert & L. Demey

How many hexagons can be constructed with bitstrings of length ℓ ?

- 2^ℓ bitstrings of length $\ell \rightsquigarrow (2^\ell-2)$ contingent bitstrings of length ℓ
- bitstrings are chosen in contradictory pairs: $\frac{(2^{\ell}-2)(2^{\ell}-4)(2^{\ell}-6)}{48}$

	$\ell = 3$	$\ell = 4$	$\ell = 5$	$\ell = 6$	$\ell=7$
	(6)(4)(2)	(14)(12)(10)	(30)(28)(26)	(62)(60)(58)	(126)(124)(122)
•	48	48	48	48	48
	1	35	455	4495	39711

• computational importance of bitstrings for generating hexagons.

Different types of hexagons require bitstrings of different length:

- strong Jacoby-Sesmat-Blanché (JSB) requires length 3
- weak JSB, Sherwood-Czezowski, U4 and U12 require length 4
- U8 requires length 5
- no hexagons require length 6, 7 ...

Bitstrings in Logical Geometry – H. Smessaert & L. Demey

KU LEUV

- 2) Bitstrings in Logical Geometry
- 3 Logical Effectiveness
- Diagrammatic Effectiveness
- 5 Linguistic and Cognitive Effectiveness
 - 6 Conclusion

- Bitstrings generate new questions about
 - the linguistic/cognitive aspects of the expressions they encode
 - the relative weight/strength of individual bit positions inside bitstrings
 - the underlying scalar/linear structure of the conceptual domain

• Edges versus center in bitstrings of length 3

• Bitstrings of length 4 as refinements/expansions of bitstrings of length 3

Bitstrings in Logical Geometry – H. Smessaert & L. Demey

KU LEU

- From mathematical/algebraic perspective no difference (so far) between
 - 'linear' bitstrings (such as 1010)
 - 'non-linear' bitstrings (such as 1^0_10)
- From linguistic/cognitive perspective difference is relevant :
 - Linear bitstrings imply that all questions (all bits) about a lexical field can be situated on a single dimension
 - \rightsquigarrow comparative quantification, proportional quantification, propositional connectives, all/many_2/few_2/no
 - Non-linear bitstrings imply that the various questions belong to fundamentally distinct dimensions
 - \rightsquigarrow modality in S5, all/John/not-John/no, all/many₁/few₁/no
 - Formulate empirical hypotheses concerning the cognitive complexity (e.g. processing times) of these lexical fields.

 → future research

KU LEUV

- 2 Bitstrings in Logical Geometry
- 3 Logical Effectiveness
- Diagrammatic Effectiveness
- 5 Linguistic and Cognitive Effectiveness
- 6 Conclusion

Conclusion

- Aristotelian relations between bitstrings in Logical Geometry
- Logical Effectiveness
 - Unconnectedness (non-contradiction + non-implication) length \geq 4
 - Counting (sub)contraries: #CD < #C, #SC < #NCD
- Diagrammatic Effectiveness
 - $\bullet\,$ 6 strong JSB hexagons in RDH \sim 6 compressions length 4 \rightsquigarrow length 3

	length 3	length 4	length 5
•	strong JSB	weak JSB, Sherwood-Czezowski	Unconnected8
		Unconnected4, Unconnected12	

- Linguistic/Cognitive Effectiveness
 - scales length 4 as refinement of length 3
 - 'linear bitstrings ~ 1 dimension' vs 'non-linear bitstrings $\sim
 eq$ dimensions'

Bitstrings in Logical Geometry - H. Smessaert & L. Demey

Thank you!

More info: www.logicalgeometry.org

Bitstrings in Logical Geometry – H. Smessaert & L. Demey