KU LEUVEN

Aristotelian diagrams for the proportional quantifier 'most'

Hans Smessaert and Lorenz Demey

Square 2018

- Aim: study the interaction between 2 four-formula fragments that independently yield an opposition diagram:
- the fragment $\mathcal{F}_{F O L}$ with the four FOL quantifiers:

$$
\begin{array}{rll}
\mathcal{F}_{F O L}:=\quad\left\{\begin{array}{cl}
\operatorname{all}(\mathrm{A}, \mathrm{~B}), & \\
\operatorname{no}(\mathrm{A}, \mathrm{~B}), & \\
\operatorname{some}(\mathrm{A}, \mathrm{~B}), & \\
& |A \cap B|=0 \\
\text { not all(A,B)}, & \\
& |A \cap B|>0 \\
&
\end{array}|B|>0\right.
\end{array}
$$

- the fragment $\mathcal{F}_{\text {most }}$ generated on the basis of the proportional quantifier most. In Generalized Quantifier Theory (GQT): $\operatorname{most}(A, B) \approx$ more than half (A, B) :

$$
\begin{array}{rll}
\mathcal{F}_{\text {most }}:=\left\{\begin{aligned}
\operatorname{most}(\mathrm{A}, \mathrm{~B}), & \\
\operatorname{most}(\mathrm{A}, \neg \mathrm{~B}), & \\
\neg \operatorname{most}(\mathrm{A}, \neg \mathrm{~B}), & \\
& \neg \operatorname{most}(\mathrm{A}, \mathrm{~B}) \\
& \}
\end{aligned}\right. & |A \cap B|>|A \backslash B| \\
& |A \cap B| \leq|A \backslash B|
\end{array}
$$

Structure of the talk

(1) Introduction
(2) Aristotelian squares

- Squares for 'all' and 'most'
- Bitstring semantics for 'all' and 'most'
(3) Aristotelian octagons
- A first octagon for 'all' + 'most'
- Bitstring semantics for 'all' + 'most'
- A second octagon for 'all' + 'most'
(9) Conclusion

Structure of the talk

(1) Introduction
(2) Aristotelian squares

- Squares for 'all' and 'most'
- Bitstring semantics for 'all' and 'most'
(3) Aristotelian octagons
- A first octagon for 'all' + 'most'
- Bitstring semantics for 'all' + 'most'
- A second octagon for 'all' + 'most'
(9) Conclusion

- universal quantifiers all and no lack existential import in FOL
- the resulting constellation is a so-called degenerate square
- only two contradiction (CD) relations on the diagonals
- no contrariety (C) between all and no
- no subcontrariety (SC) between some and not all
- no subalternation (SA) from all to some, nor from no to not all
- four pairs of unconnectedness (no Aristotelian relation whatsoever)
- 'X of opposition'

Squares for 'most'

- proportional quantifier most does have existential import: if most A are B then there is at least one $\mathrm{A}:|A \cap B|>|A \backslash B|$ entails $|A|>0$.
- the resulting constellation is a so-called classical Aristotelian square
- two contradiction (CD) relations on the diagonals
- two subalternation (SA) relations
- one contrariety (C) and one subcontrariety (SC) relation

Structure of the talk

(1) Introduction
(2) Aristotelian squares

- Squares for 'all' and 'most'
- Bitstring semantics for 'all' and 'most'
(3) Aristotelian octagons
- A first octagon for 'all' + 'most'
- Bitstring semantics for 'all' + 'most'
- A second octagon for 'all' + 'most'
(4) Conclusion
- The fragment $\mathcal{F}_{F O L}$ induces the partition $\Pi\left(\mathcal{F}_{F O L}\right)=$

$$
\left\{\begin{array}{l}
\{|A \backslash B|=0 \quad \& \quad|A|>0 \\
\\
\quad|A \backslash B|>0 \quad \&|A \cap B|>0 \\
\\
|A \cap B|=0 \quad \& \quad|A|>0 \\
\\
|A|=0
\end{array}\right.
$$

α_{1} : all A are $\mathrm{B} \&$ there are A 's
α_{2} : some but not all A are B
α_{3} : no A are B \& there are A^{\prime} 's
\} α_{4} : there are no A's
\Rightarrow quadripartition of logical space using 4 anchor formulas

- The bitstring semantics $\beta_{F O L}$ for the fragment $\mathcal{F}_{F O L}$:

$$
\begin{array}{lll}
\beta_{F O L}(\operatorname{all}(A, B)) & =\mathbf{1 0 0 1} & |A \backslash B|=0 \\
\beta_{F O L}(\operatorname{no}(A, B)) & =\mathbf{0 0 1 1} & |A \cap B|=0 \\
\beta_{F O L}(\operatorname{some}(A, B)) & =\mathbf{1 1 0 0} & |A \cap B|>0 \\
\beta_{F O L}(\operatorname{not} \operatorname{all}(A, B)) & =\mathbf{0 1 1 0} & |A \backslash B|>0
\end{array}
$$

\Rightarrow a degenerate square requires bitstrings of length 4
(Demey \& Smessaert, 2018)

- The fragment $\mathcal{F}_{\text {most }}$ induces the partition $\Pi\left(\mathcal{F}_{\text {most }}\right)=$

$$
\left\{\begin{array}{rlrl}
|A \cap B| & >|A \backslash B|, & & \alpha_{1}^{\prime}: \text { More than half }(\mathrm{A}, \mathrm{~B}) \\
& |A \cap B|=|A \backslash B|, & & \alpha_{2}^{\prime}: \text { Exactly half }(\mathrm{A}, \mathrm{~B}) \\
& |A \cap B|<|A \backslash B| & \} & \\
\alpha_{3}^{\prime}: \text { Less than half }(\mathrm{A}, \mathrm{~B})
\end{array}\right.
$$

\Rightarrow tripartition of logical space using 3 anchor formulas

- The bitstring semantics $\beta_{\text {most }}$ for the fragment $\mathcal{F}_{\text {most }}$:

$$
\begin{array}{lll}
\beta_{\text {most }}(\operatorname{most}(A, B)) & =\mathbf{1 0 0} & \\
\beta_{\text {most }}(\operatorname{most}(A, \neg B)) & =\mathbf{0 0 1} & \\
\beta_{\text {most }}(\neg \operatorname{most}(A, \neg B)) & =\mathbf{1 1 0} & \\
\beta_{\text {most }}(\neg \operatorname{most}(A, B)) & =\mathbf{0 1 1} & \\
\hline \text { 010 } & |A \cap B|<|A \backslash B| \\
\hline
\end{array}|A \backslash B| \leq|A \backslash B|
$$

\Rightarrow a classical square only requires bitstrings of length 3 .
(A)

Structure of the talk

(1) Introduction
(2) Aristotelian squares

- Squares for 'all' and 'most'
- Bitstring semantics for 'all' and 'most'
(3) Aristotelian octagons
- A first octagon for 'all' + 'most'
- Bitstring semantics for 'all' + 'most'
- A second octagon for 'all' + 'most'
(4) Conclusion
- Combine the two four-formula fragments into one eight-formula fragment $\mathcal{F}_{\text {FOLmost }}:=\mathcal{F}_{F O L} \cup \mathcal{F}_{\text {most }}$

$$
\begin{aligned}
& \mathcal{F}_{\text {FOLmost }}:=\{\quad \text { all(A,B), } \quad|A \backslash B|=0 \\
& \text { no(A,B), } \quad|A \cap B|=0 \\
& \operatorname{most}(\mathrm{~A}, \mathrm{~B}), \quad|A \cap B|>|A \backslash B| \\
& \operatorname{most}(\mathrm{A}, \neg \mathrm{~B}), \quad|A \cap B|<|A \backslash B| \\
& \neg \operatorname{most}(\mathrm{A}, \neg \mathrm{~B}), \quad|A \cap B| \geq|A \backslash B| \\
& \neg \operatorname{most}(\mathrm{A}, \mathrm{~B}), \quad|A \cap B| \leq|A \backslash B| \\
& \text { some (A, B), } \quad|A \cap B|>0 \\
& \text { not all(A, B) }\} \quad|A \backslash B|>0
\end{aligned}
$$

- Interlock two squares into an octagon; two subalternations are crucial:
- from all (A, B) to $\neg \operatorname{most}(A, \neg B) \quad(|A \backslash B|=0$ entails $|A \cap B| \geq|A \backslash B|)$
- from most (A, B) to some $(A, B) \quad(|A \cap B|>|A \backslash B|$ entails $|A \cap B|>0)$

- octagon containing 3 classical squares and 3 degenerate squares:
- known in theory as one of the 18 families of Aristotelian octagons.
- Now first 'non-artificial' instantiation of that family
- nicely fits into a series of octagons in which the number of degenerate squares increases from zero (Moretti 2009), over one (Buridan/Klima 2001), and two (Keynes 1884, Johnson 1921), to three.

Structure of the talk

(1) Introduction
(2) Aristotelian squares

- Squares for 'all' and 'most'
- Bitstring semantics for 'all' and 'most'
(3) Aristotelian octagons
- A first octagon for 'all' + 'most'
- Bitstring semantics for 'all' + 'most'
- A second octagon for 'all' + 'most'
(1) Conclusion
$\Pi\left(\mathcal{F}_{F O L}\right)=$
$\left\{\quad \alpha_{1}:|A \backslash B|=0 \quad \&|A|>0\right.$,
$\alpha_{2}:|A \backslash B|>0 \quad \&|A \cap B|>0$,
$\alpha_{3}:|A \cap B|=0 \quad \&|A|>0$,
$\alpha_{4}:|A|=0$

$$
\left\{\begin{array}{l}
\Pi\left(\mathcal{F}_{\text {most }}\right)= \\
\alpha_{1}^{\prime}:|A \cap B|>|A \backslash B|, \\
\alpha_{2}^{\prime}:|A \cap B|=|A \backslash B|, \\
\alpha_{3}^{\prime}:|A \cap B|<|A \backslash B|
\end{array}\right\}
$$

- compute bitstring semantics by taking the meet of the two original partitions: $\Pi\left(\mathcal{F}_{F O L m o s t}\right):=\Pi\left(\mathcal{F}_{F O L}\right) \wedge_{F O L} \Pi\left(\mathcal{F}_{\text {most }}\right)$
- compute the conjunctions of each anchor formula α_{i} of the former partition with each anchor formula α_{j}^{\prime} of the latter.
- this yields $4 \times 3=12$ conjunctions.
- after elimination of the inconsistent formulas we get a hexapartition.
$\Pi\left(\mathcal{F}_{F O L}\right)=$
$\left\{\quad \alpha_{1}:|A \backslash B|=0 \quad \&|A|>0\right.$,
$\alpha_{2}:|A \backslash B|>0 \quad \&|A \cap B|>0$,
$\alpha_{3}:|A \cap B|=0 \quad \&|A|>0$,
$\alpha_{4}:|A|=0$
- $\Pi\left(\mathcal{F}_{\text {FOLmost }}\right):=\Pi\left(\mathcal{F}_{F O L}\right) \wedge_{F O L} \Pi\left(\mathcal{F}_{\text {most }}\right)$
- The fragment $\mathcal{F}_{\text {FOLmost }}$ induces the partition $\Pi\left(\mathcal{F}_{F O L m o s t}\right)=$

$$
\begin{aligned}
& \{\quad|A \cap B|>|A \backslash B|=0, \\
& |A \cap B|>|A \backslash B|>0, \\
& |A \cap B|=|A \backslash B|>0, \\
& 0<|A \cap B|<|A \backslash B|, \\
& 0=|A \cap B|<|A \backslash B| \text {, } \\
& 0=|A \cap B|=|A \backslash B| \quad\} \\
& \alpha_{1}^{\prime \prime} \text { : All A are B and there are A's } \\
& \alpha_{2}^{\prime \prime} \text { : Most but not all A's are } B \\
& \alpha_{3}^{\prime \prime} \text { : Exactly half the A's are B } \\
& \alpha_{4}^{\prime \prime} \text { : Most but not all A's are not B } \\
& \alpha_{5}^{\prime \prime} \text { : No A's are B, but there are A's } \\
& \alpha_{6}^{\prime \prime} \text { : There are no A's }
\end{aligned}
$$

- The bitstring semantics $\beta_{\text {FOLmost }}$ for the fragment $\mathcal{F}_{\text {FOLmost }}$:

$\beta_{\text {FOLmost }}(\operatorname{all}(A, B))$	$=\mathbf{1 0 0 0 0 1}$	$\|A \backslash B\|=0$
$\beta_{\text {FOLmost }}(\operatorname{no}(A, B))$	$=\mathbf{0 0 0 0 1 1}$	$\|A \cap B\|=0$
$\beta_{\text {FOLmost }}(\operatorname{most}(A, B))$	$=\mathbf{1 1 0 0 0 0}$	$\|A \cap B\|>\|A \backslash B\|$
$\beta_{\text {FOLmost }}(\operatorname{most}(A, \neg B))$	$=\mathbf{0 0 0 1 1 0}$	$\|A \cap B\|<\|A \backslash B\|$
$\beta_{\text {FOLmost }}(\neg \operatorname{most}(A, \neg B))$	$=\mathbf{1 1 1 0 0 1}$	$\|A \cap B\| \geq\|A \backslash B\|$
$\beta_{\text {FOLmost }}(\neg \operatorname{most}(A, B))$	$=\mathbf{0 0 1 1 1 1}$	$\|A \cap B\| \leq\|A \backslash B\|$
$\beta_{\text {FOLmost }}(\operatorname{some}(A, B))$	$=\mathbf{1 1 1 1 0 0}$	$\|A \cap B\|>0$
$\beta_{\text {FOLmost }}(\operatorname{not} \operatorname{all}(A, B))$	$=\mathbf{0 1 1 1 1 0}$	$\|A \backslash B\|>0$

(1) Introduction
(2) Aristotelian squares

- Squares for 'all' and 'most'
- Bitstring semantics for 'all' and 'most'
(3) Aristotelian octagons
- A first octagon for 'all' + 'most'
- Bitstring semantics for 'all' + 'most'
- A second octagon for 'all' + 'most'
(1) Conclusion
- the fragment $\mathcal{F}_{S Y L L}$ with the four SYLL quantifiers:

$$
\begin{array}{rll}
\mathcal{F}_{S Y L L}:=\left\{\begin{array}{rl}
\text { all(A,B), } & \\
\text { no(A,B), } & \\
& |A \backslash B|=0 \quad \& \quad|A|>0 \\
\text { some(A,B), } & \\
& |A \cap B|>0 \quad \& \quad|A|>0 \\
\text { not all(A,B) }\} & \\
& |A \backslash B|>0
\end{array}, l\right.
\end{array}
$$

\Rightarrow move from FOL to SYLL: 'all' and 'no' do have existential import

- The fragment $\mathcal{F}_{S Y L L}$ induces the partition $\Pi\left(\mathcal{F}_{S Y L L}\right)=$

$$
\left\{\begin{array}{ll}
|A \backslash B|=0 \&|A|>0, & \alpha_{1}: \text { all } \mathrm{A} \text { are } \mathrm{B} \& \text { there are A's } \\
& |A \backslash B|>0 \&|A \cap B|>0, \\
& \alpha_{2}: \text { some but not all } \mathrm{A} \text { are } \mathrm{B} \\
& |A \cap B|=0 \&|A|>0
\end{array}\right\} \begin{array}{ll}
& \alpha_{3}: \text { no } \mathrm{A} \text { are } \mathrm{B} \text { \& there are } \mathrm{A} ' s
\end{array}
$$

\Rightarrow anchor formulas α_{1}, α_{2} and α_{3} are the same as in $\Pi\left(\mathcal{F}_{F O L}\right)$ α_{4} is deleted because it has become inconsistent in SYLL.

- The bitstring semantics $\beta_{S Y L L}$ for the fragment $\mathcal{F}_{S Y L L}$:

$$
\begin{array}{lll}
\beta_{S Y L L}(\operatorname{all}(A, B)) & =\mathbf{1 0 0} & |A \backslash B|=0 \quad \&|A|>0 \\
\beta_{S Y L L}(\operatorname{no}(A, B)) & =\mathbf{0 0 1} & |A \cap B|=0 \quad \&|A|>0 \\
\beta_{S Y L L}(\operatorname{some}(A, B)) & =\mathbf{1 1 0} & |A \cap B|>0 \\
\beta_{S Y L L}(\operatorname{not} \operatorname{all}(A, B)) & =\mathbf{0 1 1} & |A \backslash B|>0
\end{array}
$$

- Compared to $\Pi\left(\mathcal{F}_{F O L}\right)$, anchor formula α_{4} is deleted from $\Pi\left(\mathcal{F}_{S Y L L}\right)$
- so bit position four is deleted as well, yielding a bitstring semantics with bitstrings of length three instead of four.
- Combine the two four-formula fragments into one eight-formula fragment $\mathcal{F}_{S Y L L m o s t}:=\mathcal{F}_{S Y L L} \cup \mathcal{F}_{\text {most }}$

$$
\begin{array}{rll}
\mathcal{F}_{\text {SYLLmost }}:=\left\{\begin{aligned}
\operatorname{all}(\mathrm{A}, \mathrm{~B}), & \\
\operatorname{no}(\mathrm{A}, \mathrm{~B}), & |A \backslash B|=0 \quad \&|A|>0 \\
\operatorname{most}(\mathrm{~A}, \mathrm{~B}), & |A \cap B|=0 \quad \&|A|>0 \\
\operatorname{most}(\mathrm{~A}, \neg \mathrm{~B}), & |A \cap B|>|A \backslash B| \\
\neg \operatorname{most}(\mathrm{A}, \neg \mathrm{~B}), & |A \cap B|<|A \backslash B| \\
\neg \operatorname{most}(\mathrm{A}, \mathrm{~B}), & |A \cap B| \geq|A \backslash B| \\
& \operatorname{some}(\mathrm{A}, \mathrm{~B}), \\
\operatorname{not} \operatorname{all}(\mathrm{A}, \mathrm{~B}) & \}
\end{aligned}\right. & |A \cap B| \leq|A \backslash B| \\
& & |A \backslash B|>0
\end{array}
$$

A second octagon for 'all' + 'most'

$\Pi\left(\mathcal{F}_{S Y L L}\right)=$
$\left\{\quad \alpha_{1}:|A \backslash B|=0 \quad \&|A|>0\right.$,
$\alpha_{2}:|A \backslash B|>0 \quad \&|A \cap B|>0$,
$\left.\alpha_{3}:|A \cap B|=0 \quad \&|A|>0 \quad\right\}$
$\Pi\left(\mathcal{F}_{\text {most }}\right)=$
$\left\{\quad \alpha_{1}^{\prime}:|A \cap B|>|A \backslash B|\right.$,
$\alpha_{2}^{\prime}:|A \cap B|=|A \backslash B|$,
$\left.\alpha_{3}^{\prime}:|A \cap B|<|A \backslash B| \quad\right\}$

- $\Pi\left(\mathcal{F}_{S Y L L m o s t}\right):=\Pi\left(\mathcal{F}_{S Y L L}\right) \wedge_{S Y L L} \Pi\left(\mathcal{F}_{\text {most }}\right)$
- The fragment $\mathcal{F}_{\text {SYLLmost }}$ induces the partition $\Pi\left(\mathcal{F}_{\text {SYLLmost }}\right)=$
$\{\quad|A \cap B|>|A \backslash B|=0$,
$|A \cap B|>|A \backslash B|>0$, $|A \cap B|=|A \backslash B|>0$, $0<|A \cap B|<|A \backslash B|$, $0=|A \cap B|<|A \backslash B| \quad\}$
$\alpha_{1}^{\prime \prime}$: All A are B and there are A's
$\alpha_{2}^{\prime \prime}$: Most but not all A^{\prime} 's are B
$\alpha_{3}^{\prime \prime}$: Exactly half the A's are B
$\alpha_{4}^{\prime \prime}$: Most but not all A 's are not B
$\alpha_{5}^{\prime \prime}$: No A's are B, but there are A's
- Compared to $\Pi\left(\mathcal{F}_{\text {FOLmost }}\right)$, the sixth anchor formula $\alpha_{6}^{\prime \prime}$ is deleted, so bit position six is deleted as well, yielding a bitstring semantics with bitstrings of length five instead of six.
- The bitstring semantics $\beta_{\text {SYLLmost }}$ for the fragment $\mathcal{F}_{\text {SYLLmost }}$:

| $\beta_{\text {SYLLmost }}(\operatorname{all}(A, B))$ | $=\mathbf{1 0 0 0 0}$ | $\|A \backslash B\|=0 \quad \&\|A\|>0$ |
| :--- | :--- | :--- | :--- |
| $\beta_{\text {SYLLmost }}(\operatorname{no}(A, B))$ | $=\mathbf{0 0 0 0 1}$ | $\|A \cap B\|=0 \&\|A\|>0$ |
| $\beta_{\text {SYLLmost }}(\operatorname{most}(A, B))$ | $=\mathbf{1 1 0 0 0}$ | $\|A \cap B\|>\|A \backslash B\|$ |
| $\beta_{\text {SYLLmost }}(\operatorname{most}(A, \neg B))$ | $=\mathbf{0 0 0 1 1}$ | $\|A \cap B\|<\|A \backslash B\|$ |
| $\beta_{\text {SYLLmost }}(\neg \operatorname{most}(A, \neg B))$ | $=\mathbf{1 1 1 0 0}$ | $\|A \cap B\| \geq\|A \backslash B\|$ |
| $\beta_{\text {SYLLmost }}(\neg \operatorname{most}(A, B))$ | $=\mathbf{0 0 1 1 1}$ | $\|A \cap B\| \leq\|A \backslash B\|$ |
| $\beta_{\text {SYLLmost }}(\operatorname{some}(A, B))$ | $=\mathbf{1 1 1 1 0}$ | $\|A \cap B\|>0$ |
| $\beta_{\text {SYLLmost }}(\operatorname{not} \operatorname{all}(A, B))$ | $=\mathbf{0 1 1 1 1}$ | $\|A \backslash B\|>0$ |

- fundamental impact on the overall Aristotelian constellation:
- from 3 relations of contrariety in $\mathcal{F}_{\text {FOLLmost }}$ to $\mathbf{6}$ in $\mathcal{F}_{\text {SYLLmost }}$.
- from 3 relations of subcontrariety in $\mathcal{F}_{\text {FOLLmost }}$ to $\mathbf{6}$ in $\mathcal{F}_{\text {SYLLmost }}$.
- from 6 relations of subalternation in $\mathcal{F}_{\text {FOLLmost }}$ to $\mathbf{1 2}$ in $\mathcal{F}_{\text {SYLLmost }}$.
- from $\mathbf{1 2}$ relations of unconnectedness in $\mathcal{F}_{\text {FOLLmost }}$ to $\mathbf{0}$ in $\mathcal{F}_{\text {SYLLmost }}$

- return to a well-documented family of octagons (Lenzen 2012):
- consists of six interlocking classical squares, but no degenerate squares.
- illustrates well-known phenomenon of logic-sensitivity of Aristotelian diagrams.

Structure of the talk

(1) Introduction
(2) Aristotelian squares

- Squares for 'all' and 'most'
- Bitstring semantics for 'all' and 'most'
(3) Aristotelian octagons
- A first octagon for 'all' + 'most'
- Bitstring semantics for 'all' + 'most'
- A second octagon for 'all' + 'most'
(9) Conclusion

\mathcal{F}	$\|\mathcal{F}\|$	$\|\Pi(\mathcal{F})\|$	Aristotelian diagram
$\mathcal{F}_{F O L}$	4	4	degenerate square
$\mathcal{F}_{S Y L L}$	4	3	classical square
$\mathcal{F}_{\text {most }}$	4	3	classical square

\mathcal{F}	$\|\mathcal{F}\|$	$\|\Pi(\mathcal{F})\|$	Aristotelian diagram
$\mathcal{F}_{\text {FOL }}$	4	4	degenerate square
$\mathcal{F}_{S Y L L}$	4	3	classical square
$\mathcal{F}_{\text {most }}$	4	3	classical square
$\mathcal{F}_{\text {FOLmost }}$	8	6	new type of octagon
$\mathcal{F}_{\text {SYLLmost }}$	8	5	Lenzen octagon

111100 some (A, B)
$\neg \operatorname{all}(\mathrm{A}, \mathrm{B}) \mathbf{0 1 1 1 1 0}$

11110 some (A,B)
$\neg \operatorname{all}(\mathrm{A}, \mathrm{B}) 01111$

- Demey, Lorenz \& Hans Smessaert (2018). 'Combinatorial Bitstring Semantics for Arbitrary Logical Fragments'. Journal of Philosophical Logic 47, 325-363. https://doi.org/10.1007/s10992-017-9430-5.
- Johnson, W.E. (1921). Logic. Part I. Cambridge University Press.
- Keynes, John Neville (1884). Studies and Exercises in Formal Logic. MacMillan.
- Klima, Gyula (2001, ed.). John Buridan, Summulae de Dialectica. Yale University Press.
- Lenzen, Wolfgang (2012). 'How to square knowledge and belief'. In: Jean-Yves Béziau \& Dale Jacquette (eds.) Around and Beyond the Square of Opposition. Springer, pp. 305-311.
- Moretti, Alessio (2009). The Geometry of Logical Opposition. Ph.D. thesis, Neuchâtel.
- Smessaert, Hans \& Lorenz Demey (2014). 'Logical Geometries and Information in the Square of Oppositions'. Journal of Logic, Language and Information 23/4, 527-565.

Thank you!

More info: www.logicalgeometry.org

